Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теореме Гаусса. Применение теоремы Гаусса для расчета напряженности поля заряженной сферической поверхности и объемно заряженного шара



Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +σ. Т.к. заряд распределен равномернопо поверхности то поле, которое создавается им, обладает сферической симметрией. Значит линии напряженности направлены радиально (рис. 3). Проведем мысленно сферу радиуса r, которая имеет общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, который создает рассматриваемое поле, и, по теореме Гаусса, 4πr2E = Q/ε0, откуда

(3)

При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости Е от r приведен на рис. 4. Если r'<R, то замкнутая поверхность не содержит внутри себя зарядов, значит внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).


Поле объемно заряженного шара. Шар радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью ρ (ρ = dQ/dV – заряд, который приходится на единицу объема). Учитывая соображения симметрии, аналогичные п.3, можно доказать, что для напряженности поля вне шара получится тот же результат, что и в случае (3). Внутри же шара напряженность поля будет иная. Сфера радиуса r'<R охватывает заряд Q'=(4/3)πr'3ρ. Поэтому, используя теорему Гаусса, 4πr'2E=Q'/ε0=(4/3)πr'3ρ/ε0. Т.к. ρ=Q/(4/3πR3)) получаем

(4)

Значит, напряженность поля вне равномерно заряженного шара описывается формулой (3), а внутри его изменяется линейно с расстоянием r' согласно зависимости (4). График зависимости Е от r для рассмотренного случая показан на рис. 5.

35. Напряженность поля бесконечной заряженной нити.
Пусть — поверхностная плотность заряда на плоскости (рис. 3).

Рис. 3

В качестве поверхности площадью S выберем цилиндрическую поверхность, образующая которой перпендикулярна плоскости. Основания этого цилиндра расположены перпендикулярно линиям напряженности по обе стороны от плоскости. Так как образующие цилиндра параллельны линиям напряженности ( = 90°, cos = 0), то поток через боковую поверхность цилиндра отсутствует, и полный поток через поверхность цилиндра равен сумме потоков через два основания: N = 2ES. Внутри цилиндра заключен заряд q = S, поэтому, согласно теореме Остроградского-Гаусса,

где = 1 (для вакуума), откуда следует, что напряженность поля равномерно заряженной бесконечной плоскости

Бесконечная равномерно заряженная нить

Пусть — линейная плотность заряда нити. Выделим участок нити длиной и окружим его цилиндрической поверхностью, расположенной так, что ось цилиндра совпадает с нитью (рис. 4).

Рис. 4

Линии напряженности электростатического поля, создаваемого нитью в сечении, перпендикулярном самой нити, направлены перпендикулярно боковой поверхности цилиндра, поэтому поток напряженности сквозь боковую поверхность , где R — радиус цилиндра. Через оба основания цилиндра поток напряженности равен нулю ( = 90°, cos = 0). Тогда полный поток напряженности через выделенный цилиндр

Заряд, находящийся внутри этого цилиндра, .

Согласно теореме Остроградского—Гаусса, можно записать

Следовательно, модуль напряженности поля, создаваемого равномерно заряженной бесконечно длинной нитью на расстоянии R от нее,

36. Проводники в электрическом поле.
Определение: Проводниками называют материалы, имеющие так называемые свободные заряды, которые могут перемещаться в объеме проводника под действием сколь угодно малого внешнего электрического поля.

Примечание: Типичным примером проводников являются металлы, атомы которых при формировании кристалла решетки отдают в коллективное использование 1-3 -в с внешних оболочек. Эти электроны, несмотря на то, что находятся в потенциальной яме объема проводника, весьма слабо связаны с атомом, то есть имеют большую подвижность (связь каждого электрона одновременно принадлежит всем атомам, что и обеспечивает их высокую подвижность).

Примечание: При помещении проводников во внешнее электрическое поле, свободные заряды начинают перемещаться в этом поле, если в объем проводника был дополнительно внесен некоторый заряд, то под действием этого внешнего поля, этот дополнительный заряд распределиться по поверхности проводника.

Примечание: Таким образом, при электризации проводника сообщенный ему дополнительный заряд оказывается, распределен в области поверхности проводника. Это распределение заряда будет происходить до тех пор, пока при распределении заряда потенциал поля в любой точке проводника не станет одинаковым.

(18.1)

Отметим свойства заряженного проводника во внешнем электрическом поле.

1. Электрический потенциал в любой точке объема равен потенциалу в любой точке поверхности проводника.

2. Линии электрического поля перпендикулярны поверхности проводника.

3. При помещении заряда проводника во внешнее электрическое поле внутри объема проводника будет наблюдаться движение зарядов до тех пор, пока суммарное поле внутри объема, обусловленное внешним полем, и поле дополнительного заряда не станет равным нулю.

Примечание: Эквипотенциальные поверхности огибают проводник, помещенный во внешнее электрическое поле, а одна из них, потенциал которой равен потенциалу проводника, пересекает его.

Примечание: Для любого проводника существует только одна поверхность, потенциал которой равен потенциалу поверхности проводника.





Дата публикования: 2015-11-01; Прочитано: 2147 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.02 с)...