Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Измерение токов и напряжений

Измерение напряжения и силы тока относится к классическим видам электроизмерений. В радиоизмерительной практике в последние годы получили распространение цифровые измерители напряжения и тока, использующие процессорные и интегральные технологии. Тем не менее в промышленности еще эксплуатируются аналоговые электроизмерительные приборы. Преимущество приборов этого класса:

· при производстве используются отлаженные технологические процессы;

· простота эксплуатации и невысокая стоимость;

· наглядность результата измерения (стрелочный индикатор воспринимается проще, чем индикация цифровая с разделением на запятые)

Эти приборы помехоустойчивы, малочувствительны электростатическим разрядам (ЭСР) и воздействию радиочастотных полей. Все это позволяет считать аналоговые измерители напряжения и тока базовыми измерительными приборами в радиоизмерениях

В технике связи напряжения измеряют значительно чаще, чем токи. При измерении этих величин есть ряд общих закономерностей. Поэтому дальше, рассматривая измерения напряжений, будет отмечаться то, что справедливо и для токов.

6.1. Измеряемые параметры напряжения (тока)

Если измеряется постоянное во времени напряжение, то результат измерения – численное значение - отождествляется с величиной этого напряжения. Если же напряжение (ток) изменяется во времени, а результат измерения выражен числом, то на первый взгляд непонятно, как это число связано с изменяющейся измеряемой величиной.

Мгновенные значения напряжения наблюдаются на экране осциллографа или другого индикаторного устройства и определяют в каждый момент времени.

Как показано на рис.5.1, значения текущего напряжения в моменты времени

и не равны между собой и в общем случае не равны результату измерения .

Как же результат измерения связан с изменяющимся во времени напряжением?

Считается, что измерить переменное напряжение (ток) – означает измерить интегральный параметр текущего напряжения. Установлено четыре таких интегральных параметра (используются обычно три последних):

1) Среднее значение (постоянная составляющая) напряжения равно среднему арифметическому всех мгновенных значений за период:

2) Средневыпрямленное напряжение определяется как среднее арифметическое абсолютных мгновенных значений за период:

3) Среднеквадратическое значение напряжения определяется как корень квадратный из среднего квадрата мгновенного значения напряжения за время измерения (или за период):

Если периодический сигнал не синусоидален, то квадрат среднего квадратического значения равен сумме квадратов постоянной составляющей и средних квадратических значений гармоник:

4) Максимальное (пиковое) значение

Интегрирование при определении параметров проводится за время , которое равно времени одного измерения. В последнем выражении операция означает, что на интервале от 0 до (т.е. за время измерения) выбирается наибольшее значение (на рисунке 5.1 ему соответствует ).

Связь между рассмотренными параметрами описывается тремя коэффициентами: коэффициентом амплитуды (пик-фактор) , коэффициентом формы , коэффициентом усреднения .

По определению

Кроме того, ; знак равенства выполняется для постоянного напряжения, сигналов типа «меандр». Для каждой формы физически реализуемого сигнала все три коэффициента определены, и их значения не зависят от параметров сигнала (таких как амплитуда, фаза, частота – важна только форма). Так для синусоидального сигнала

Для сигнала пилообразной формы :

Для прямоугольных однополярных импульсов со скважностью :

(, где Т –период, t - длительность импульса)

На какой параметр реагирует вольтметр, зависит от типа детектора (преобразователя). Если говорить о стрелочном вольтметре, то «реагирует» означает, что стрелка индикатора прибора повернется на угол, пропорциональный параметру, соответствующему типу детектора (если детектор пиковый, то пропорционально , если квадратичный, то ). Стрелка проектируется на шкалу, которая должна быть проградуирована в значении какого-либо параметра, но в зависимости от значения параметра показание будет различным.

Если рассмотреть вольтметр (амперметр) непосредственной оценки (существуют различные другие типы, например, компенсационный), то его модель, удобная для рассмотрения вопросов, связанных с градуировкой, может быть представлена в виде рисунке 5.2. На рисунке обозначено: U(t) – сигнал, подлежащий измерению; a - отклик преобразователя (отклонение стрелки), пропорциональный одному из параметров. Это зависит от вида преобразователя; - показание, снятое с отсчетного устройства.

Преобразователь
Отсчетное устройство (шкала)


U(t) a

Рис.5.2

Из-за того, что у вольтметров используются детекторы трёх типов, важным является то, как они проградуированы. Эти два фактора определяют так называемую зависимость показаний вольтметра от формы измеряемого напряжения.

Рассмотрим процесс градуировки, чтобы понять в чём заключается эта зависимость. Не останавливаясь на специфических особенностях процесса градуировки, можно рассмотреть этот процесс с помощью следующей схемы рисунке 5.3.

Преобразователь пиковый
Преобразователь средневыпрямленный
Преобразователь квадратичный
Шкала 1
Шкала 2
Шкала 3
Генератор синусоидального сигнала
Образцовый вольтметр среднеквадратических значений (ОВ)



Рис.5.3

На схеме индекс «1» относится к пиковому вольтметру,

«2»- средневыпрямленному, «3»- квадратичному.

Меняя амплитуду сигнала на выходе генератора, будем снимать показание образцового вольтметра и «переносить» его на шкалы градуируемых в то место, которое указали стрелки (т.е. в соответствии с углом поворота a). Так как у градуируемых вольтметров преобразователи разные, то на один и тот же сигнал генератора при одном и том же показании образцового вольтметра у градуируемых вольтметров отклонения a будут разными, то есть градировочные характеристики вольтметров с разными преобразователями будут различны. Принято вольтметры переменного напряжения градуировать на синусоидальном сигнале в среднеквадратических значениях – именно поэтому в рассматриваемой схеме генератор синусоидального сигнала, а образцовый вольтметр показывает среднеквадратичное значение. В некоторых случаях градуируют и в других значениях синусоидального напряжения – например, пиковый вольтметр градуируют в амплитудных значениях, но тогда это специально оговаривается.

При входном синусоидальном сигнале после проведенной таким образом градуировке, показания всех вольтметров будут среднеквадратическим значением, то есть для синусоидального сигнала можно записать следующие зависимости:

(5.9)

где - градировочные коэффициенты соответствующих вольтметров. Используя выражения (5.9), формально выразим их через коэффициенты амплитуды и формы:

(5.10)

В соответствии с (5.9) и (5.10) можно записать:

(5.11)

Выражения (5.11) отображают структуру показаний вольтметров с разными детекторами, при условии что они проградуированы в среднеквадратических значениях синусоидального напряжения. Как видно, в показаниях присутствуют градуировочные коэффициенты, выраженные через коэффициенты амплитуды и формы синусоидального напряжения.

Теперь тремя вольтметрами, проградуированными в среднеквадратических значениях синусоидального напряжения, измерим напряжение произвольной формы . Каждый преобразователь в соответствии со своей характеристикой преобразования сформирует отклик, пропорциональный размеру интегрального параметра напряжения произвольной (несинусоидальной!) формы, и показания трех вольтметров можно записать в виде:

;

(5.12)

Из (5.12) видно, что только показание третьего вольтметра будет представлять параметр напряжения произвольной формы , то есть среднеквадратическое значение сигнала . Остальные два показания ( и ) не будут параметрами измеряемого напряжения; так как, например, при измерении , а и , следовательно, .

Из всего сказанного можно сделать вывод: если вольтметр проградуирован в значениях параметра, на который реагирует его преобразователь, то показание вольтметра при любой форме измеряемого сигнала равно параметру этого сигнала. В этом случае показания вольтметра не зависят от формы измеряемого напряжения.

Это, например, справедливо для пикового вольтметра, проградуированного в пиковых значениях синусоидального сигнала.

Оценим систематическую погрешность, возникающую из-за влияния формы сигнала.

По показанию первого можно определить пиковое значение измеряемого несинусоидального сигнала . В соответствии с (5.12) для пикового вольтметра

.

Зная и , можно найти среднеквадратическое значение измеряемого напряжения : . Если пренебречь влиянием формы измеряемого напряжения, то есть принять показание за среднеквадратическое значение несинусоидального сигнала , то систематическая погрешность равна:

.

Рассуждая аналогично, для вольтметра средневыпрямленных значений:

.

Из полученных выражений для погрешностей можно сделать вывод, что пренебрежение влиянием формы измеряемого напряжения вызывает тем большую погрешность, чем больше измеряемое напряжение отличается от синусоидального. О степени отличия можно судить по отношению коэффициентов амплитуды или формы измеряемого напряжения ( и ) от соответствующих коэффициентов синусоидального напряжения ( и ).

Вольтметр, как и другие измерительные приборы, может быть с открытым или закрытым входом. Напомним, что при открытом входе измеряется весь сигнал, а при закрытом измеряется сигнал без постоянной составляющей. Значение градуировочного коэффициента вольтметра не изменится, если с открытого входа перейти на закрытый (и наоборот), так как у синусоидального сигнала, на котором осуществлялась градуировка, постоянная составляющая равна нулю. В общем виде можно записать:

СF[u(t)] при открытом входе;

СF[u(t) - ] при закрытом входе

где -показание прибора, С – градуировочный коэффициент, F – функциональное преобразование (т.е. формула для получения из текущего сигнала интегрального параметра, вид которого определяется типом детектора вольтметра), - постоянная составляющая измеряемого сигнала, равная среднему значению.

5.2.Примеры

Пример 1. Вольтметром средневыпрямленных значений, с открытым входом, проградуированным в среднеквадратических значениях синусоидального напряжения измеряется напряжение ux(t) (с коэффициентами Кфх и Ках, отличными от соответствующих коэффициентов синусоидального напряжения). Получено показание Ап. Требуется выразить Uср.в.х, Uср.кв.х и Uмакс.х через полученное показание Ап.

Из 5-12 полученное показание Ап = Кф.sin Uср.вып.х, отсюда Uср.вып.х= .

Так как по определению , то ; .

Пример 2. То же, но вольтметр с закрытым входом.

В этом случае показание и далее, как в предыдущем примере.

Пример 3. Пиковым вольтметром с открытым входом, проградуированным в среднеквадратических значениях синусоидального напряжения, измеряется напряжение, показанное на рисунке 5.4. Длительности положительного и отрицательного импульса равны 1/3 Т, амплитуда отрицательного импульса составляет 0,25Um.

Требуется найти показание вольтметра.

T
u(t)
Um
t


Рис.5.4

В соответствии с 5.11

Пример 4. То же, но вольтметр с закрытым входом.

Тогда показание будет:

Постоянная составляющая:

И окончательно:

5.3 Обобщенная структура вольтметра

Обобщенная структурная схема аналогового вольтметра, показанная на рисунке 5.5, включает все возможные блоки.

Здесь u(t) – измеряемый сигнал, Ап - показание, снимаемое со шкалы

Входное устройство
Усилитель переменного тока
Преобразователь
Усилитель переменного тока
Электромеханический преобразователь
u(t)
Ап


Рис. 5.5.

В зависимости от назначения и характеристик вольтметра некоторые из блоков в конкретном вольтметре могут отсутствовать, за исключением электромеханического преобразователя (т.е. в просторечии стрелочного прибора, индикатора), который и без других блоков является простейшим аналоговым вольтметром.

Исходный динамический диапазон изображенного на рис 5.5. вольтметра соответствует динамическому диапазону электромеханического преобразователя. Для расширения диапазона в сторону больших измеряемых напряжений во входном устройстве устанавливается ступенчатый аттенюатор с точно известными коэффициентами деления каждой ступени; для расширения в сторону меньших – сигнал усиливается (при этом коэффициент усиления должен быть известен).

Быстродействие вольтметра лимитируется быстродействием самого инерционного блока – электромеханического преобразователя и не может быть увеличено дополнительными блоками.

Включение дополнительных блоков не только расширяет динамический диапазон, но и увеличивает чувствительность, расширяет его возможности. Например, если усилитель обеспечивает частотную избирательность, то получается селективный вольтметр.

В стробоскопических цифровых вольтметрах, структура которого во многом подобна структуре цифрового осциллографа, и в так называемых виртуальных измерительных приборах проблемы влияния показания от формы можно избежать.

В таких приборах входной сигнал с высокой скоростью дискретизируется и квантуется, как показано на рисунке 5.6.

b 3XxolJhNKUU9FcFWKL1ts9MkNDsbstsk/feOJz0Oz8s7z1ssZ9uJEQffOlIQLyIQSJUzLdUKvnfv Dy8gfNBkdOcIFVzRw7K8vSl0btxEXzhuQy24hHyuFTQh9LmUvmrQar9wPRKzkxusDnwOtTSDnrjc djKJokxa3RJ/aHSP6war8/ZiFXxMelql8du4OZ/W18Pu6XO/iVGp+7t59Qoi4Bz+wvCrz+pQstPR Xch40SlIkseMowoyXsD8OU5TEEcGWZSALAv5f0H5AwAA//8DAFBLAQItABQABgAIAAAAIQC2gziS /gAAAOEBAAATAAAAAAAAAAAAAAAAAAAAAABbQ29udGVudF9UeXBlc10ueG1sUEsBAi0AFAAGAAgA AAAhADj9If/WAAAAlAEAAAsAAAAAAAAAAAAAAAAALwEAAF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgA AAAhAN12hcynBQAAlBsAAA4AAAAAAAAAAAAAAAAALgIAAGRycy9lMm9Eb2MueG1sUEsBAi0AFAAG AAgAAAAhAIaSjPzfAAAACQEAAA8AAAAAAAAAAAAAAAAAAQgAAGRycy9kb3ducmV2LnhtbFBLBQYA AAAABAAEAPMAAAANCQAAAAA= "> U(t)

t

Рис.5.6.

В результате непрерывный сигнал заменяется массивом чисел, представляющих мгновенные значения сигнала в дискретные моменты времени , где k меняется от 1 до n. Эти числа хранятся в памяти прибора и из них можно «сконструировать» любой интегральный параметр.

Например:

Среднеквадратическое значение:

(5.13)

Средневыпрямленное значение:

(5.14)


Дата публикования: 2015-11-01; Прочитано: 1488 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.018 с)...