Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Периоды трансляции



а. Инициация.

Рибосомы находятся в цитоплазме в трёх состояниях:

- диспергированном, когда большая и малая субъединицы находятся отдельно друг от друга,

       
   


Диспергированные Отдельная Полирибосома

рибосомы рибосома (полисома)

Рис. 65. Состояния рибосом в цитоплазме.

- в состоянии комплекса, когда малая и большая субъединица объединены в один ансамбль, а между ними проходит иРНК.

- в форме полиробосомы (полисомы) – на одну нить иРНК «нанизаны» несколько рибосомальных комплексов. Каждый из них синтезирует белок (см. рис. 65).

В инициации происходит процесс формирования инициаторного комплекса. В это процесс входят три следующих друг за другом этапа.

1. Малая субъединица рибосомы определяет 5 конец иРНК, содержащий «кэп», и присоединяется к нему.

2. Скользя по иРНК, малая субъединица «находит» расположенный вблизи «кэпа» стартовый кодон. В этом месте субъединица останавливается и фиксируется на иРНК. Сформировалась система, состоящая из двух элементов - малой субъединицы и нити иРНК. Система устроена таким образом, что в малой субъединицы располагаются только 2 кодона, каждый из них занимает свою активную область или центр или П или А. Стартовый кодон располагается в функциональном центре «П» (рис. 66, А). В другом функциональном центре (А) располагается кодон первой аминокислоты входящей в белок. Еще раз подчеркнём, что два функциональных центра в малой субъединице не активны. Они активируются только при присоединении большой субъединице, в которой находятся аналогичные центры П и А.

Кэп Стартовый кодон

 
 

А + =

       
 
   
 


Малая

субъединица иРНК

Б + =

 
 


Метиониновая Инициаторный

аминоацил-тРНК комплекс

В + =

3

 
 


Большая субъединица

Рис. 66. Схема формирования инициаторного комплекса и рибосомы. А – малая субъединица рибосомы соединяется с иРНК. Б – антикодон метиониновой-тРНК соединяется с кодоном иРНК в участке «П». Формируется инициаторный комплекс. В – инициаторный комплекс соединяется с большой субъединицей рибосомы. Формируется рибосома.

У многих организмов стартовый кодон (или инициирующий кодон) в иРНК содержит триплет комплементарный антикодону аминоацил-тРНК несущий метионин. С метионинового кодона, как правило, начинается синтез белка.

3. К стартовому кодону, находящемуся в «П» участке, прикрепляется аминоацил-тРНК, несущая аминокислоту метионин. Комплекс, состоящий из малой субъединице рибосомы, иРНК, метиониновой-тРНК называют инициаторный комплекс (рис.66, Б).

Б. Элонгация

Как только к инициаторному комплексу присоединяется большая субъединица рибосомы, начинается этап инициации. С присоединением большой субъединицы в рибосоме формируются два полноценных функциональных центра «П» и «А». В обоих центрах размещаются только два кодона иРНК. В центре «П» находится метиониновая-тРНК, а к участку «А», который открыт в цитоплазму, пробуют присоединиться аминоацил-тРНК несущие разные аминокислоты. Присоединяется только та аминоацил-тРНК, антикодон которой комплементарен кодону иРНК, находящемуся в«А» участке. В нашем случае в «А» участок попадает триптофановая аминоацил-тРНК (Т) (рис.67, В, Г).

Инициаторный комплекс

3

       
 
   
 


Б

А

 
 


33

Г В

       
   
 
 


3 3

Д Е

33

Ж З

Рис. 67. Схема трансляции. А – компоненты аппарата трансляции (малая, большая субъединицы рибосом, иРНК, аминоацил-тРНК, тРНК и аминокислоты) в цитоплазме перед началом синтезе белка. Б – инициаторный комплекс. В – начало элонгации. Большая и малая субъединица соединены, в функциональном центре «П» аминоацил-тРНК с метионином (М). Г – в функциональном центре «А» аминоацил-тРНК с триптофаном (Т). Д – соединение аминокислот метионина и триптофана в функциональном центре «А». Ж – перемещение аминокислот вместе с ДНК в центр «П». З – центр «А» заполнен аминоацил-тРНК, которая несёт аминокислоту глицин (Г).

Специальные ферменты соединяют пептидной связью две аминокислоты находящиеся в функциональных участках между собой (рис. 67, Д). Одновременно происходит разрыв между тРНК и аминокислотой метионином. Метионин остаётся присоединённым к триптофану в участке «А», а в участке «П» находится освобождённая от аминокислоты тРНК (рис. 67, Е). Специальный фермент, используя энергию макроэргов (АТФ) продвигает рибосому по иРНК на один триплет (шаг) по направлению к 3концу иРНК. При этом из участка «П» тРНК освобождается и выходит в цитоплазму, а её место занимает аминоацил-тРНК несущая триптофан (Т) и прикреплённый к триптофану метионин (М). «А» центр становится свободным и на кодон, находящейся в нём иРНК, начинают претендовать другие цитоплазматические аминоацил-тРНК (рис. 67, Ж). Присоединяется та аминокислота, антикодон которой комплементарен кодону иРНК «А» участка (рис. 67, З). Затем цикл повторяется.

Функциональные обязанности малой и большой субъединиц рибосом, различны. Малая субъединица присоединяет аминоацил-тРНК (т.е. декодирует информацию), а большая субъединица отвечает за образование пептидной связи между аминокислотами.

В. Терминация.

Конец трансляции наступает тогда, когда в «А» участок рибосомы попадает один из стоп-кодонов (УАГ, УАА, УГА). Для них нет соответствующих аминоацил- тРНК и процесс синтеза белка останавливается.

К стоп-кодону присоединяются факторы терминации (белки), которые активируют ферменты, находящиеся в рибосомах. Эти ферменты, в свою очередь, осуществляют процесс отщепления синтезированного белка от тРНК и вызывают диссоциацию рибосомы на субъединицы.

Следует отметить интересный феномен, наблюдаемый в терминации. Ранее мы отмечали (см раздел «Процессинг»), что конец нити иРНК, где располагается терминатор, заканчивается полиадениловым «хвостиком» - Поли-А. При окончании синтеза полипептида, рибосома сходит с нити иРНК, «откусывая» при этом одно адениловое основание от Поли-А. Следующая рибосома, завершив синтез, также отщепляет одно основание и т.д. Как только все основания будут утрачены, иРНК разрушается ферментами. Таким образом, Поли-а, являются своеобразными биологическими часами, отмеряющими длительность существования иРНК и количество синтезированных с определённой иРНК белков. Длиннее Поли-А – больше молекул белка будет синтезироваться с этой иРНК и наоборот.

г. Нарушение трансляции.

Трансляция, как и другие процессы матричного синтеза, может быть нарушена различными факторами внутренней и внешней среды. Достаточно часто такие нарушения связаны с воздействием на процесс химических агентов, самой различной природы. В медицинской практике нарушение трансляции процесса может происходить при употреблении антибиотиков. В этом случае в основе механизма повреждения ДНК чаще всего лежат три феномена.

1. Антибиотик может связаться с активным центром рибосомы (например, с «П» или «А» центром) и блокировать взаимодействие с этим центром участников процесса трансляции. Так стрептомицин связывается с «П», а тетрациклин с «А» центром рибосом у микроорганизмов, полностью подавляя их активность. Следует отметить, что в рибосоме человека другая структура этих центров, поэтому с ними эти антибиотики не связываются. Однако другой антибиотик – пуромицин, связывается с «А» центром рибосом человека и прекращает трансляцию. Понятно. что в качестве лекарственного препарата его можно использовать с очень большой осторожностью.

2. Другой механизм действия веществ нарушающих синтез белка заключается в присоединении их к какому либо ферменту-участнику синтеза. В этом случае фермент выключается из процесса. Так дифтерийный токсин инактивирует некоторые ферменты на этапе элонгации.

3. Дистантный механизм действия химических соединений заключается в воздействии химического агента не на сам процесс трансляции, а на структуры которые определяют его течение. Такие структуры располагаются в различных областях клетки. Ими могут быть рецепторы, располагающие на поверхности плазматической мембраны. Химический агент, связываясь с рецептором индуцирует в цитоплазме цепочку биохимических реакций, которые влияют на интенсивность трансляции, вплоть до её полного прекращения. Примерно так действует интерферон.

МЗ. Это перевод информации из полинуклеотидной последовательности иРНК в аминокислотную последовательность белка. Осуществляется этот перевод путём синтеза белка на матрице – иРНК. В трансляции принимают участие рибосомы, тРНК, рРНК, различные ферменты. Состоит из трёх этапов – инициации, элонгации и терминации. На стадии инициации образуется инициаторный комплекс, который состоит из малой субъединице рибосомы, иРНК, тРНК несущей метионин. После присоединения к нему большой субъединице рибосомы наступает стадия элонгации, который заключается в присоединении тРНК, несущих аминокислоты к иРНК и связывание аминокислот друг с другом. Процесс происходит в двух активных центрах, расположенных на границе малой и большой субъединице. Трансляция заканчивается, когда в рибосому попадает «бессмысленный» кодон, не кодирующий аминокислоты.





Дата публикования: 2015-11-01; Прочитано: 292 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...