Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Водопроницаемость грунтов. Фильтрация



Водопроницаемость характеризуется способностью грунта пропускать через себя воду под действием разности напоров и обуславливается физическим строением и составом грунта. При прочих равных условиях при физическом строении с меньшим содержанием пор, и при преобладании в составе частиц глины водопроницаемость будет меньшей, нежели у пористых и песчаных грунтов соответственно. Нельзя недооценивать данный показатель, т.к. в строительстве он влияет на устойчивость земляных сооружений и обуславливает скорость уплотнения грунтов оснований, суффозию грунта и оползневые явления (в т.ч. и на сопротивление растяжению). Фильтрацией называется движение свободногравитационной воды в грунтах в различных направлениях (горизонтально, вертикально вниз и вверх) под воздействием гидравлического градиента (уклона, равного потере напора на пути движения) напора. Коэффициентом фильтрации (Kf) принято считать скорость фильтрации при гидравлическом градиенте равном единице. При этом скорость фильтрации (V) прямо пропорциональна гидравлическому градиенту (J). V = Kf * J.

Пластичность – способность грунта деформироваться под действием внешних сил и сохранять полученную форму после снятия нагрузки.

Твёрдость-сопративление проникания твёрдого тела.

Прочность — это свойство горных пород сопротивляться разрушению под действием внешней нагрузки. Различают прочность при сжатии, растяжении, изгибе, скалывании и ударе.

Хрупкость — свойство горных пород разрушаться под действием ударных нагрузок без заметной остаточной деформации.

Вязкостью называют способность горной породы сопротивляться силам, стремящимся разъединить ее частицы. При горных работах вязкость пород оценивают по сопротивлению, оказываемому породой при отделении части ее от массива.

3.Умова граничної рівноваги за рішеннями Кулона і Ренкіна.

4. Види тиску в грунті; ефективний і нейтральний тиск, капілярний тиск. Поняття тиску та зв’язності с 42 ДОЛМАТОВ

5. Водо проникливість грунту. Закон фільтрації. Напірний градієнт. Початковий напірний градієнт і його роль у визначенні фільтрації. с 37-39

6. Основні поняття по розподіленню напружень в масиві грунту від передачі на пружний напівпростір різний ймовірних сполучень навантажень (зосереджена сила N, ряд зосереджених сил, рівномірно-розподільне навантаження на пружний напівпростір). Аналітичний метод, метод елементарного підсумку, метод кутових точок. с 104-110

7. Розподіл контактових напружень під підошвою жорстких фундаментів від дії зосередженої сили на круглий в плані фундамент (на квадратний чи прямокутний фундамент, на стрічковий фундамент). с115

8. Фази напруженого стану грунту. Робота грунту під навантаженням. с100-102

9 Кут найбільшого відхилення і його значення.

Среди бесконечно большого разнообразия элементарных площадок,

существуют три, по отношению к которым действуют только нормальные на-

пряжения. Они называются главными площадками, а действующие по отно-

шению к ним напряжения – главными напряжениями. Векторы, отображаю-

щие главные напряжения, являются полуосями эллипсоида напряжений. 82

3. По отношению к остальным – неглавным - площадкам напряжения

действуют под некоторым углом к нормали, проведенной к плоскости главной

площадки. Этот угол к нормали называют углом отклонения - θ. В этой связи

вектор напряжения можно разложить на нормальную и касательную состав-

ляющие. При изменении положения площадки на 900

, то есть при переходе от

одного главного напряжения к другому, угол отклонения изменяется от нуля до

некоторого максимального значения и затем снова до нуля. Максимальное зна-

чение угла отклонения называется углом наибольшего отклонения - θ

m. Угол

наибольшего отклонения является весьма важной характеристикой напряжен-

ного состояния грунта в конкретной точке основания. Как будет показано да-

лее, с увеличением угла отклонения увеличивается опасность разрушения от

касательных напряжений, которым грунтысопротивляются очень плохо

10 Граничний напружений стан грунту для піщаних грунтів

С 162

Предельное напряженное состояние грунта в данной точке соответствует такому напряженному состоянию, когда малейшее добавочное силовое воздействие нарушает существующее равновесие и приводит грунт в неустойчивоё состояние: в массиве грунта возникают поверхности скольжения, разрывы и нарушается прочность между его частицами и агрегатами. Такое напряженное состояние грунтов следует рассматривать как совершенно недопустимое при возведении на них сооружений.

Сыпучее тело, как правило, подчиняется нелинейному закону упругости и испытывает структурные деформации. Изучение поведения сыпучего тела представляет собой сложную задачу, которую обычно заменяют более простой: в которой деформации не рассматриваются совсем, а напряженное состояние принимается таким, какое бывает в начальный момент движения сыпучего тела, когда в каждой точке

сыпучего тела возникает сдвиг. Такое напряженное состояние называется предельным.

в механике сыпучих должен быть установлен критерий для характеристики напряженного состояния, при котором происходит разрушение или наступает текучесть. Этот критерий должен дать возможность составить дополнительные уравнения, которые в сочетании с дифференциальными уравнениями равновесия позволят определить неизвестные величины нормальных и касательных напряжений в сыпучем теле.

Этот критерий заключается в следующем: предполагается, что сыпучее тело целиком находится в предельном напряженном состоянии и в любой его точке выполняется условие предельного напряженного состояния Кулона-Мора:

Мы видим, что условия равновесия рассматриваются в совокупности с условием, характеризующим предел прочности сыпучего тела. Построенную на этой основе теорию называют теорией предельного равновесия.

Вспомним, что через каждую точку напряженного тела можно провести три (для плоской задачи – две) взаимно перпендикулярные плоскости, по которым касательные напряжения отсутствуют, а нормальные имеют экстремальные значения. Такие плоскости называются главными площадками, а действующие по ним нормальные напряжения – главными нормальными напряжениями σ1;σ3

Максимальные касательные напряжения действуют под углом 45 к главным площадкам (рис. 1), и для твёрдых тел по этим площадкам может произойти сдвиг, если касательные напряжения превзойдут определенный предел. Для сыпучих же тел (где сопротивление сдвигу определяется не только величиной скрепления между частицами, но и величиной действующего сжимающего нормального напряжения), опасными в отношении сдвига будут не те площадки, по которым действуют наибольшие τ, а те, для которых отношение τ/σ (являющееся тангенсом угла θ отклонения напряжения от нормали) окажется наибольшим.

11. Граничний напружений стан грунту для зв’язних грунтів.

с 48

12. Початкове критичне навантаження на грунт.


Установлены (при давлениях на грунт, больших структурной прочности) две критические нагрузки: 1-нагрузка, соответствующая началу возникновения в грунте зон сдвигов и окончанию фазы уплотнения, когда под краем нагрузки возникает предельное напряжённое состояние. И 2- нагрузка, при которой под нагруженной поверхностью сформировываются сплошные области предельного равновесия, грунт приходит в неустойчивое состояние и полностью исчерпывается его несущая способность.

;

если принять z =0, т.е. ни в одной точке грунта не будет зон предельного равновесия,

начальным критическим давлением на грунт будет:

нач .

Это и есть формула проф. Н.П. Пузыревского для начальной критической нагрузки на грунт. Определяемое по ней давление можно рассматривать как совершенно безопасное.

Вторая критическая нагрузка, это предельная нагрузка, соответствующая полному исчерпанию несущей способности грунта и сплошному развитию зон предельного равновесия, что достигается для оснований фундаментов при окончании формирования жесткого ядра, деформирующего основание и распирающего грунт в стороны.

Впервые эта задача для невесомого грунта, нагруженного полосовой нагрузкой была решена Прандтлем и Рейснером (1920-1921):

пред .


13. Розрахунковий опір грунту згідно з нормативними документами.

Зависимость «нагрузка-осадка» для фундаментов мелкого заложения можно считать линейной только до определенного предела давления на основание (рис. 5.22). В качестве такого предела принимается расчетное сопротивление грунтов основания R [4]. При расчете деформаций основания с использованием указанных в п. 5.5.1 расчетных схем среднее давление под подошвой фундамента (от нагрузок для расчета оснований по деформациям) не должно превышать расчетного сопротивления грунта основания R, кПа, определяемого по формуле

(5.29)

где γc 1 и γc 2 — коэффициенты условий работы, принимаемые по табл. 5.11; k — коэффициент, принимаемый: k = 1, если прочностные характеристики грунта (с и φ) определены непосредственными испытаниями, и k = 1,1, если указанные характеристики приняты по таблицам, приведенным в гл. 1; Мγ, Мq и Мc — коэффициенты, принимаемые по табл. 5.12; kz — коэффициент, принимаемый: kz = 1 при b < 10 м, kz = z 0/ b + 0,2 при b ≥ 10 м (здесь b — ширина подошвы фундамента, м; z 0 = 8 м); γ II — расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод определяется с учетом взвешивающего действия воды), кН/м3; γ ´II — то же, залегающих выше подошвы; с II — расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа; d 1 — глубина заложения фундаментов бесподвальных сооружений или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала,'определяемая но формуле

d 1 = hs + hcfγcf ´II

(5.30)

(здесь hs — толщина слоя грунта выше подошвы фундамента со стороны подвала, м; hcf — толщина конструкции пола подвала, м; γcf — расчетное значение удельного веса материала пола подвала, кН/м3); db — глубина подвала — расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом шириной В ≤ 20 м и глубиной более 2 м принимается db = 2 м, при ширине подпали В > 20 и принимается d > 0).

Рис. 5.22. Характерная зависимость «нагрузка — осадка» для фундаментов мелкого заложения

Если d 1 > d (где d — глубина заложения фундамента), то d 1 принимается равным d, a db = 0.

Формула (5.29) применяется при любой форме фундаментов в плане. Если подошва фундамента имеет форму круга или правильного многоугольника площадью А, то принимается b = . Расчетные значения удельных весов грунта и материала пола подвала, входящие в формулу (5.29), допускается принимать равными их нормативным значениям (полагая коэффициенты надежности по грунту и материалу равными единице). Расчетное сопротивление грунта при соответствующем обосновании может быть увеличено, если конструкция фундамента улучшает условия его совместной работы с основанием. Для фундаментных плит с угловыми вырезами расчетное сопротивление грунта основания допускается увеличивать на 15 %.

ТАБЛИЦА 5.11. ЗНАЧЕНИЯ КОЭФФИЦИЕНТОВ γс 1 и γс 2

Грунты γс 1 γс 2 для сооружений с жесткой конструктивной схемой при отношении длины сооружения или его отсека к его высоте L/H
≥ 4 < 1,5
Крупнообломочные с песчаным заполнителем и песчаные, кроме мелких и пылеватых Пески мелкие Пески пылеватые: маловлажные и влажные насыщенные водой Крупнообломочные с пылевато-глинистым заполнителем и пылевато-глинистые с показателем текучести грунта или заполнителя: IL ≤ 0,25 0,25 < IL ≤ 0,5 IL > 0,5 1,4 1,3 1,25 1,1 1,25 1,2 1,1 1,2 1,1 1,0 1,0 1,0 1,0 1,0 1,4 1,3 1,2 1,2 1,1 1,1 1,0

Примечания: 1. Жесткую конструктивную схему имеют сооружения, конструкции которых приспособлены к восприятию усилий от деформаций оснований путем применения специальных мероприятий.

2. Для сооружений с гибкой конструктивной схемой значение коэффициента γc 2 принимается равным единице.

3. При промежуточных значениях L/H коэффициент γc 2 определяется интерполяцией.

ТАБЛИЦА 5.12. ЗНАЧЕНИЯ КОЭФФИЦИЕНТОВ Mγ, Mq, Mc

φ II Mγ Mq Mc φ II Mγ Mq Mc
      3,14   0,69 3,65 6,24
  0,01 0,06 3,23   0,72 3,87 6,45
  0,03 1,12 3,32   0,78 4,11 6,67
  0,04 1,18 3,41   0,84 4,37 6,90
  0,06 1,25 3,51   0,91 4,64 7,14
  0,08 1,32 3,61   0,98 4,93 7,40
  0,10 1,39 3,71   1,06 5,25 7,67
  0,12 1,47 3,82   1,15 6,59 7,95
  0,14 1,55 3,93   1,24 5,95 8,24
  0,16 1,64 4,05   1,34 6,34 8,55
  0,18 1,73 4,17   1,44 6,76 8,88
  0,21 1,83 4,29   1,55 7,22 9,22
  0,23 1,94 4,42   1,68 7,71 9,58
  0,26 2,05 4,55   1,81 8,24 9,97
  0,29 2,17 4,69   1,95 8,81 10,37
  0,32 2,30 4,84   2,11 9,44 10,80
  0,36 2,43 4,99   2,28 10,11 11,25
  0,39 2,57 5,15   2,46 10,85 11,73
  0,43 2,73 5,31   2,66 11,64 12,24
  0,47 2,89 5,48   2,88 12,51 12,79
  0,51 3,06 5,66   3,12 13,46 13,37
  0,56 3,24 5,84   3,38 14,50 13,98
  0,61 3,44 6,04   3,66 15,64 14,64

Когда расчетная глубина заложения фундаментов принимается от уровня планировки подсыпкой, в проекте оснований и фундаментов должно приводиться требование о необходимости выполнения планировочной насыпи до приложения полной нагрузки на основание. Аналогичное требование должно содержаться и в отношении устройства подсыпок под полы в подвале.

Коэффициенты Mγ, Mq и Mc, входящие в формулу (5.29), получены исходя из условия, что зоны пластических деформаций под краями равномерно загруженной полосы (рис. 5.23) равны четверти ее ширины и вычисляются по следующим соотношениям:

Mγ = ψ/4; Mq = 1 + ψ; Mc = ψctg φ II,

(5.31)

где ψ = π/(ctg φ II + φ II – π/2); φ II — расчетное значение угла внутреннего трения, рад.

Рис. 5.23. Зоны пластических деформаций в основании под краями равномерно загруженной полосы

При вычислении R значения характеристик φ II, с II и γ II принимаются для слоя грунта, находящегося под подошвой фундамента до глубины zR = 0,5 b при b < 10 м и zR = t + 0,1 b при b ≥ 10 м (здесь t = 4 м). При наличии нескольких слоев грунта от подошвы фундамента до глубины zR принимаются средневзвешенные значения указанных характеристик. Аналогичным образом поступают и с коэффициентами γc lи γc 2.

Как видно из формулы (5.29), значение R зависит не только от физико-механических характеристик грунтов основания, но и от искомых геометрических размеров фундамента — ширины и глубины его заложения. Поэтому определение размеров фундаментов приходится вести итерационным способом, задавшись предварительно какими-то начальными размерами.

14. Граничне навантаження для сипучих і зв’язних грунтів. Рішення Прандтля, Шляінського, Скемптона, Терцагі, Березанцева. с 168-172

15. Питання стійкості масивів грунту (зсуви, обвали, спливи) – дати визначення.

Зсув — сповзання і відрив мас гірських порід вниз схилом під дією сили тяжіння.

Зсуви виникають у результаті порушення природної рівноваги залягання верств гірських порід з розривом їх суцільності і переміщенням у горизонтальному або близькому до нього напрямі. Вони часті на схилах долин або річкових берегів, у горах, на берегах морів. Найчастіше зсуви виникають на схилах, складених водотривкими і водоносними породами, що чергуються. Зсуви можуть виникати під час горотворення, внаслідок зволоження ґрунту, а також діяльності людини (техногенні — при гірничих та будівельних роботах тощо).

Очікувані зсуви — зсуви, які визначаються попередніми розрахунками згідно з календарними планами розвитку гірничих робіт.

Причиною утворення зсувів є порушення рівноваги між силою тяжіння і утримуючими силами, найпоширенішими причинами якого у свою чергу є:

· збільшення крутизни схилу в результаті підмиву водою;

· ослаблення міцності порід при вивітрюванні або перезволоженні опадами і підземними водами;

· дія сейсмічних поштовхів;

· будівельна і господарська діяльність.

Зазвичай зсув має форму півкільця, утворюючи пониження в середині.

Зсуви шкодять сільськогосподарським угіддям, підприємствам, населеним пунктам. Для боротьби зі зсувами застосовуються споруди для підтримки берегів, насадження рослинності та ін.

Обвал

· 1) Стрімке падіння великої маси ґрунту, гірської породи, снігу тощо внаслідок зсуву, руйнування і т.ін. Може супроводжуватися обвальним землетрусом.

· 2) Купа землі, гірська порода, каміння, снігу і т.ін., що звалилися згори.

· 3) Частина земної поверхні з слідами відпадання, відвалювання маси гірських порід, ґрунту.

За складом порід розрізнюють обвали скельні, або кам'яні, земляні (ґрунтові) і змішані, а за об'ємом порід обвалення — обвали великі (сотні або тисячі м3), малі (до 200 м3) і каменепади (падіння і скочування окремих каменів).

16. Елементарні задачі стійкості вертикальних укосів для сипучих і зв’язних грунтів. с 174

17 Визначення стійкості схилів і укосів за методом Терцагі і Феленіуса. с 177-179

18. Визначення стійкості схилів і укосів за методом Маслова.с 176

19. Визначення тиску піщаних грунтів на підпірні стінки (вертикальна задня грань). Визначення тиску зв’язних грунтів на підпірні стінки (вертикальна задня грань). с 183

20. Визначення тиску на підпірні стінки з нахиленою задньою гранню. С 181

Подпорная стенка удерживает массив грунта от обрушения. Различают гравитационные и шпунтовые подпорные стенки (рис. 4.7).

а) б) в)
Рис. 4.7. а, б – гравитационные подпорные стенки, массивная (а) и тонкоэлементная (б); в – шпунтовая стенка

Основной нагрузкой для них является боковое давление грунта. Как подпорные стенки работают также стены подвалов зданий и подземных сооружений.

В зависимости от величины и направления возможного смещения стенки на нее может действовать давление покоя, активное (распор) или пассивное давление (отпор). Активное давление возникает даже при небольших смещениях стенки от грунта засыпки; пассивное – при значительных смещениях стенки на засыпку. В обоих случаях грунт приходит в предельное состояние с формированием призмы обрушения (при активном) и призмы выпора при пассивном давлении

Здесь нужно рассмотреть только давление для состояний предельного равновесия грунта. В состоянии покоя, когда нет боковых смещений, значение коэффициента бокового давления определяется формулой (2.3).

Ограничиваемся рассмотрением гладкой вертикальной стенки с горизонтальной засыпкой (рис. 4.9).

Пусть стенка имеет высоту h, засыпка представлена песком (φ≠0; с=0). Рассмотрим напряжения в точке задней грани стенки на глубине z.

Поскольку стенка гладкая, вертикальное и горизонтальное напряжения в точке – главные, причем большее главное напряжение σz = σ1 = γz, а меньшее горизонтальное является активным давлением и равно: σах3аσ1аγ z, где – коэффициент активного бокового давления. Значение коэффициента λа следует из УПР (2.17):

. (4.14)





Дата публикования: 2015-11-01; Прочитано: 677 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.021 с)...