Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Сведения по технологии производства автоклавных силикатных материалов



Автоклав представляет собой горизонтальный цилиндр диаметром 2600-3600 мм и длиной 17-20 м. В нем уложены рельсовые пути для вагонеток или платформ. После загрузки крышку автоклава герметически закрывают, в котел впускают пар, постепенно доводят давление до заданного. Автоклавы применяют двух типов: тупиковые и проходные. Для ускорения процесса запаривания иногда предварительна вакуумируют загруженный автоклав. При пропаривании часть извести остается свободной и процесс твердения ее заканчивается в дальнейшем за счет поглощения углекислоты из воздуха. При запаривании крупногабаритных изделий в формах полезное заполнение автоклава составляет не более 30%.

В последнее время практикуют двухстадийный процесс запаривания: вначале изделия в формах поступают в ямные камеры с температурой 60-80° С на 8-10 ч, где они приобретают прочность, позволяющую направлять их в распалубленном состоянии в автоклавы для дальнейшего твердения. После термообработки изделия остывают в течение 2 ч в теплом помещении, затем их транспортируют на склад готовой продукции.

Связующим в силикатных бетонах является вяжущее, состоящее из гидросиликатов и гидроалюминатов кальция, образующихся в результате физико-химического процесса, протекающего в паровой среде автоклава.

В зависимости от температуры пара, времени действия, удельной поверхности кремнеземистой составляющей, насыщенности известью и других факторов образуются минералы - гидросиликаты кальция (ксонотлит, тоберморит, гилебрандит и др.). Преобладание той или иной формы гидросиликата кальция в изделии диктует свойства материала. Управление процессом минералообразования путем правильного подбора смеси и установления режима термообработки позволяет создать материалы с заданными свойствами.

При производстве силикатных изделий большое значение имеет качество извести. Известь допускается с минимальным количеством пережога. Ее применяют в виде свежеобожженной комовой кипелки, тонкоизмельченной в процессе приготовления смеси.

Количество извести, добавляемой в массу, зависит от ее качества и вида заполнителя и равно: 8-10% Для песчаных масс, 2-3% для масс из доменных гранулированных шлаков. Изготовляют также известково-глино-песчаные изделия с добавкой в массу 5-10% лессовидного суглинка. Для силикатных изделий пригодны речные и овражные пески, не содержащие примесей слюды. Зола ТЭЦ и ГРЭС, применяемая для производства газозоло-бетона и газозолосиликата, не должна содержать несгоревшего угля свыше 10%.

Первой операцией при изготовлении силикатных изделий является измельчение извести в мельнице и составление смеси в растворомешалке или бегунах. Для активизации процессов минералообразования в массу вводят молотый песок либо перемалывают известь вместе с песком. Для интенсификации процесса образования гидросиликатов кальция иногда в массу добавляют сульфат натрия (до 1%).

Одним из вариантов технологии производства силикатных изделий является предварительное смешивание и совместный помол в дезинтеграторе гашеной извести или молотой кипелки и песка. Материал, попадая под удар быстро вращающихся стержней, смешивается и частично измельчается. Недостатком этого способа является быстрое изнашивание пальцев и корзин дезинтегратора.

Второй операцией производства силикатных изделий является формование. Силикатный кирпич прессуется на специальных прессах под давлением (150-250)*105 н/м2 и укладывается автоматически на вагонетки. Важной проблемой является перевод заводов силикатного кирпича на выпуск крупных силикатных изделий, изготовляемых виброформованием, литьем в горизонтальные или кассетные формы. При формовании в кассетах поверхности изделий получаются гладкими, размеры точными.

Производственный процесс изготовления ячеистых силикатных изделий состоит из размола песка, приготовления пеноэмульсии (либо газообразователя), составления массы, подготовки форм, укладки арматуры в формы (если изготовляются армированные изделия), заливки форм массой, термообработки изделий в автоклаве, распалубки изделий. При изготовлении газосиликатных теплоизоляционных плит формы до автоклавной обработки поступают на резательные машины, где масса при необходимости разрезается на изделия.

При производстве крупногабаритных ячеистых изделий большой толщины необходимо принять меры к уменьшению осадки массы. В этом случае до автоклавной обработки формы с залитой ячеистой массой выдерживают в течение 3-4 ч; хорошие результаты дает ввод в состав массы пористых добавок - шлака, керамзита и т. д.

Для сокращения срока выдерживания изделий до автоклава в смесь вводят небольшое количество хлористого кальция, растворимого стекла, гипса, сернокислого глинозема.

Одним из важнейших вопросов в технологии производства ячеистых бетонов является выбор парообразователя. Для изготовления пеносиликатных изделий хорошим пенообразователем является гидролизованная кровь (ГК). Для газосиликатных изделий применяют алюминиевую пудру. В качестве добавки для регулирования скорости гашения извести применяют тонкомолотый гипс.

Формы перед заливкой ячеистой массы смазывают петролатумом или смесью солярового масла и автола или выстилают полиэтиленовой пленкой. Отформованные силикатные изделия поступают в автоклавы на обработку паром под давлением 8-12 атмосфер примерно по такому режиму: подъем давления 2-3 ч, выдержка при максимальном давлении пара 2-12 ч, спуск давления 2 ч. Материалами для производства силикатного кирпича являются воздушная известь и кварцевый песок. Известь применяется в виде молотой негашеной, частично загашенной или гашеной гидратной. Она должна быстро гаситься и содержать не более 5 % MgO. Заполнителем служат мелкие и средние кварцевые пески. К пескам для производства силикатного кирпича предъявляются высокие требования по содержанию глинистых и илистых примесей, а также слюды. Эти примеси снижают качество изделия. Могут также в качестве заполнителей использоваться доменные шлаки и золы.

Сырьевая шихта для производства силикатного кирпича представляет собой жесткую смесь, содержащую 92…94 % кварцевого песка и 6…8 % извести (в пересчете на активную СаО) и 9…11 % воды. Существуют две технологии производства силикатного кирпича – барабанная (гашение смеси осуществляется в гасильных барабанах) и силосная (гашение – в силосе). Наиболее распространена силосная технология.

Вопрос 10. Сортамент стали. Классификация арматурной стали согласно СНБ5.03.01=02.

Арматурную сталь, применяемую для армирования железобетонных конструкций, классифицируют по следующим признакам: основной технологии изготовления, профилю, условиям применения и вида поставки.

1) По технологии изготовления арматурную сталь разделяют на две группы: горячекатаную стержневую (поставляемую металлургическими предприятиями в виде прямых стержней) и холоднотянутую проволочную (поставляемую в виде мотков или бухт). На производстве эти группы стали называют часто тяжелой и легкой. Обработка проволочной и стержневой арматурной стали различна по составу производственных операций.

Рис. 1. Арматурные изделия из высокопрочной проволоки: а — высокопрочная проволока, б — то же, периодического профиля, в — семипроволочная прядь, г — арматурный канат

2) По профилю арматурная сталь подразделяется на: гладкую и периодического профиля. Сталь периодического профиля (горячекатаная) является основным типом стали, применяемой в современном строительстве; гладкую применяют в виде проволоки и в незначительном количестве в виде стержневой арматуры.

3) По условиям применения арматурная сталь делится на: ненапрягаемую (обычную) арматуру и напрягаемую, применяемую в предварительно напряженных конструкциях. Ненапрягаемую арматуру используют в обычных конструкциях и в предварительно напряженных конструкциях (в сочетании с напряженной).

Каждая из групп арматурной стали классифицируется дополнительно.

Стержневая арматурная сталь делится на: горячекатаную (не обрабатываемую после проката); термически упрочненную (дополнительно термически обрабатываемую после проката); упрочненную вытяжкой (подвергающуюся после проката упрочнению вытяжкой в холодном состоянии).

Холоднотянутую проволочную арматурную сталь (рис. 1) применяют в виде арматурной проволоки и арматурных проволочных изделий: арматурных семипроволочных прядей, арматурных много-прядных канатов, сварных сеток и каркасов.

1) По функциональному назначению арматура подразделяется на: а) рабочую, б) конструктивную (распределительную) и в)монтажную. Рабочая арматура воспринимает усилия, возникающие под действием нагрузок на конструкцию и ее собственной массы. Количество арматуры рассчитывают в соответствии с этими нагрузками.

В зависимости от ориентации в железобетонной конструкции а) рабочая арматура может быть продольной или поперечной.

Продольная рабочая арматура воспринимает усилия растяжения или сжатия, действующие по продольной оси элемента. Например, в изображенной на 55 балке, опирающейся по концам, продольная рабочая арматура выполнена из стержней 2, 3, 5, которые сопротивляются растягивающим усилиям в нижней зоне конструкции. Для восприятия усилий, действующих при изгибе под углом 45° к продольной оси балки, стержни 2 и 3 отгибают. В колоннах продольную арматуру устанавливают для повышения сопротивляемости усилиям сжатия.

Поперечная арматура воспринимает усилия, действующие поперек оси балки. Такую арматуру выполняют в виде хомутов либо расположенных поперечно отрезков стержней в сварных каркасах и сетках.

б) Конструктивная (распределительная) арматура обеспечивает цельность конструкции, учитываемой при расчете прочности, а также в распределении действия сосредоточенных сил или ударной нагрузки на большую площадь. Стержни рабочей и распределительной арматуры сваривают либо связывают в единый пространственный каркас или плоские сетки. Иногда распределительную арматуру используют для того, чтобы придать арматурному каркасу необходимую жесткость.

Конструктивная арматура служит для восприятия таких усилий, на которые конструкцию не рассчитывают. В частности, сюда относятся усилия от усадки бетона, температурных деформаций. Конструктивную арматуру обязательно устанавливают в местах резкого изменения сечения конструкций, где происходит концентрация напряжений.

в) Монтажную арматуру устанавливают в зависимости от конструктивных и технологических требований, она не имеет непосредственного статического значения. Монтажная арматура необходима для создания из рабочих и конструктивных стержней жесткого транспортабельного каркаса. Рабочая и конструктивная арматура одновременно могут выполнять функции монтажной.

Для арматурной стали, упрочненной вытяжкой, установлено два класса, которые имеют обозначения, соответствующие классу исходной горячекатаной арматурной стали, но с добавлением индекса «в» (вытяжка): А-Нв и В-Шв. Из волоченой проволочной стали изготовляют арматуру основных видов: арматурную проволоку и арматурные проволочные изделия (сетки, каркасы).

Арматурную проволоку делят на: обыкновенную (низкоуглеродистую), изготовленную из стали класса B-I, и высокопрочную (углеродистую), изготовленную из стали класса В-П.

Высокопрочная и обыкновенная проволочная арматурная сталь бывает гладкой и периодического профиля. При обозначении периодического профиля к букве «В» (волоченая) добавляют букву «р» (рифленая), например Вр-И. Арматурную проволоку из стали класса B-I используют для изготовления сварной ненапрягаемой арматуры, а из класса B-II — напрягаемой арматуры.

Горячекатаная арматурная сталь классов A-I и А-Н предназначена для употребления в качестве ненапрягаемой арматуры в обычных железобетонных конструкциях.

Напрягаемую арматуру из стали классов A-I и A-III используют в основном при изготовлении сварных арматурных изделий, поэтому к этим сталям предъявляют повышенные требования в отношении свариваемости контактной сваркой (стыковой и точечной, дуговой, шовной, ванной и сваркой под флюсом).

Горячекатаную сталь, упрочненную вытяжкой, например, класса А-Пв и А-Шв, предназначают главным образом для изготовления отдельных стержней напрягаемой арматуры в предварительно напряженных железобетонных конструкциях. При необходимости ее можно использовать и для изготовления ненапрягаемой арматуры.

Термически упрочненную арматурную сталь употребляют только для несварной напрягаемой арматуры в предварительно напряженных железобетонных конструкциях.

Обыкновенную арматурную проволоку из стали класса В-Н применяют при изготовлении арматурных сеток и каркасов контактной точечной сваркой. Допускают использование этой проволоки и при изготовлении вязаных каркасов балок высотой не более 400 мм и колонн.

Высокопрочную проволоку из стали классов В-П и Вр-П используют в качестве отдельных элементов несварной напрягаемой арматуры, а также как непрерывную арматуру предварительно напряженных конструкций.

Для изготовления арматуры железобетонных конструкций применяют низкоуглеродистую, средне- и высокоуглеродистую сталь. Низкоуглеродистая сталь содержит менее 0,25 % углерода, среднеуглеродистая — 0,25...0,6%; высокоуглеродистая —0,6...2%.

Количество углерода в стали резко влияет на ее свойства. С увеличением содержания углерода прочность и твердость стали увеличивается, при этом она становится более хрупкой и хуже сваривается. В целях улучшения некоторых свойств стали в сплав дополнительно вводят так называемые легирующие добавки (например, хром, никель, вольфрам, молибден, ванадий), иногда 5...6 видов металла. Легированную сталь получают также увеличением содержания в сплаве кремния и марганца. Легированная сталь обладает в одних случаях повышенной прочностью, в других — повышенной твердостью, коррозионной стойкостью.

По суммарному содержанию легирующих добавок сталь делят на три группы: низколегированная —до 5 %; среднелегированная — 5... 10 %; высоколегированная —свыше 10%. Содержание различных элементов в стали (ее химический состав) отражает ее марка. Процент армирования выражают произведением (х-100=ц, %• Сталь для арматуры в зависимости от механических свойств подразделяют на классы А-1, А-И,'А-П1 и др. Марки стали обозначают в зависимости от химического состава; металлы, входящие в состав стали, обозначают буквами: Г — марганец, С — кремний, Т — титан, Ц — цирконий, X — хром, М — молибден. Например, в марке стали 23Х2Г2Ц первые цифры указывают на содержание углерода в сотых долях процента; цифры после буквенных обозначений обозначают содержание соответствующего элемента в процентах (при отсутствии цифры содержание его не превышает 1 %).

Арматуру, вводимую в бетонные конструкции для восприятия растягивающих усилий (при изгибе, растяжении, внецентренном сжатии и растяжении), располагают главным образом в растягиваемых частях. В отдельных случаях арматуру применяют для усиления бетона против сжимающих усилий.

Марку арматурной стали выбирают с учетом типов, монолитных конструкций и схемой их работы, а также прочностных характеристик бетона. Применение высокопрочных бетонов позволяет использовать стали-повышенной прочности. Высокопрочные арматурные стали применяют главным образом для предварительно напряженных конструкций.





Дата публикования: 2015-10-09; Прочитано: 687 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...