Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Симптомы



В ранней стадии болезни — лихорадка, крапивница, ломота в мышцах и суставах, позднее — боли в правом подреберье, под ложечкой; часто увеличение печени и жёлчного пузыря.

Билет 42

1 вопрос.

Онтогенез – это индивидуальное развитие организма (особи) с момента его зарождения до прекращения существования. В других случаях онтогенез определяют как индивидуальное развитие организма, завершающееся его воспроизведением.

В ходе онтогенеза многоклеточных организмов происходит рост, дифференцировка и интеграция частей организма. Существует множество типов онтогенеза (например, личиночный, яйцекладный, внутриутробный). Часть из них будет рассмотрена при изучении отдельных групп организмов.У высших многоклеточных организмов онтогенез обычно делят на два периода – эмбриональное развитие (до перехода к самостоятельному существованию) и постэмбриональное развитие (после перехода к самостоятельному существованию). Эмбриональный период онтогенеза многоклеточных животных включает следующие стадии: зиготы, ее дробления, образования бластулы (однослойного зародыша), гаструлы (двухслойного зародыша) и нейрулы (трехслойного зародыша).

Зигота представляет собой оплодотворенную яйцеклетку (яйцо). Оплодотворение представляет собой процесс слияния сперматозоида с яйцеклеткой. Зигота содержит всю генетическую информацию будущего организма, цитоплазму с органоидами клетки и запас питательных веществ (желток).

По содержанию желтка различают несколько типов яиц: алецитальные (без желтка), олиголецитальные (с малым содержанием желтка), мезолецитальные (с умеренным содержанием желтка) и полилецитальные (с высоким содержанием желтка). Чем больше желтка в яйце, тем больше его размеры. По распределению желтка в яйце различают следующие типы яиц: гомолецитальные (желтка мало, распределен равномерно, ядро в центре), телолецитальные (желтка много, распределен неравномерно, ядро смещено к одному из полюсов), центролецитальные (желтка много, распределен равномерно, ядро находится в центре клетки и окружено желтком).

Вскоре после образования зиготы начинается ее дробление. Дробление – это ряд митотических делений яйца, в ходе которых оно, не увеличиваясь в размерах, разделяется на всё более мелкие клетки – бластомеры. На ранних стадиях дробления гены яйца не функционируют, и лишь в конце дробления начинается синтез мРНК.

Существует множество типов дробления. Характер дробления зависит от таксономической принадлежности организмов: например, у круглых червей наблюдается билатеральное дробление, у кольчатых червей – спиральное, а у насекомых – поверхностное. Для яиц с низким содержанием желтка характерно полное равномерное дробление, а для яиц с высоким содержанием желтка – полное неравномерное или неполное. Кроме того, существует детерминантное дробление (с очень ранней дифференцировкой бластомеров) и индетерминантное дробление (с поздней дифференцировкой бластомеров). Различают также спиральное дробление (характерное для первичноротых животных) и радиальное дробление (характерно для вторичноротых).

У многих организмов в результате дробления образуется морула – шаровидное скопление бластомеров. Иногда морулу рассматривают как отдельную стадию эмбрионального развития, а иногда как разновидность следующей стадии – бластулы.

Поздние фазы дробления (бластуляция) завершаются образованием бластулы – однослойного зародыша. Существует множество типов бластул: морула, равномерная и неравномерная целобластула, равномерная и неравномерная стерробластула, дискобластула, перибластула. В простейшем случае бластула представляет собой целобластулу – полый шар, стенка которого образована бластодермой, состоящей из бластомеров. При неравномерном дроблении более крупные бластомеры называются макромеры, а более мелкие – микромеры. Полость бластулы называется бластоцель, или первичная полость тела.

Затем в ходе гаструляции бластула превращается в двуслойный зародыш – гаструлу. Существует множество типов гаструляции. В одних случаях энтодерма образуется за счет иммиграции части бластомеров в первичную полость. В других случаях происходит инвагинация (впячивание) части бластодермы. При полном неравномерном или неполном дроблении наблюдаются другие типы гаструляции: мультиполярная и униполярная иммиграция, деламинация, эпиболия.

В простейшем случае гаструла представляет собой полый шар, стенки которого образованы двумя слоями клеток. Наружный слой клеток называется эктодерма, а внутренний – энтодерма. У ряда организмов между эктодермой и энтодермой сохраняется первичная полость тела. Центральная же полость гаструлы (гастроцель, или первичная кишка) сообщается с внешней средой с помощью бластопора, или первичного рта.

В ходе нейруляции гаструла превращается в трехслойный зародыш, который у хордовых называется нейрула. Сущность нейруляции заключается в образовании мезодермы – третьего зародышевого листка. Мезодерма представляет собой клеточные пласты, расположенные между энтодермой и эктодермой.

После появления всех трех зародышевых листков начинаются процессы гистогенеза (дифференцировки тканей) и органогенеза (закладки органов). Эмбриональное развитие завершается выходом организма из яйца или его рождением.

Постэмбриональный период продолжается от перехода организмов к существованию вне яйца или зародышевых оболочек до полового созревания. В постэмбриональном периоде завершаются процессы органогенеза, роста и дифференцировки

Клетки многоклеточного организма объединены в органы и ткани в зависимости от строения, развития и выполняемой функции. Специализируясь на выполнении определенных функций, клетки многоклеточного организма выполняют их более эффективно, но при этом они становятся более зависимыми от результатов работы других клеток организма.

Клетки кишечника обеспечивают организм строительными материалами, но сами нуждаются в кислороде, который им поставляют эритроциты; клетки органов чувств получают информацию о состоянии внешней среды, а нервная система эту информацию перерабатывает и дает сигналы, каким образом организм должен реагировать и т.д. Таким образом, все клетки организма оказываются взаимозависимыми.
Для того, чтобы все клетки организма работали как единое целое, необходима четкая согласованность их деятельности. Другими словами, дифференциация клеток требует их интеграции (лат. integratio -восполнение).

Уже в яйцеклетке можно обнаружить неравномерное распределение наследственной информации. Цитоплазматические факторы белковой природы проникают в ядро и определяют характер считываемой информации. В процессе развития клеточная специализация возникает как результат дифференциальной активности генов, связанной со сложными ядерно-цитоплазматическими отношениями.

Взаимодействие между собой отличающихся друг от друга клеток является основой, на которой возникает дифференциальная активность генов на тканевом уровне и приводит к формированию органов.

Части зародыша, из которых формируются одни органы, будучи пересаженными на новое место, дают начало другим органам, т.е. тем, которые должны образоваться на данном месте. Такое развитие получило название зависимой дифференцировки.

Дифференцировке тканей и образованию органов предшествует также синтез гормонов и определенных белков, характерных для данных морфологических структур. Именно они га данном этапе развития определяют направление морфогенеза.

Наружная или плазматическая мембрана ограничивает клетку от окружающей среды и благодаря наличию молекул-рецепторов обеспечивает целесообразные реакции клетки на изменения в окружающей среде. Молекулы-рецепторы по своей природе белки. Мембрана принимает участи е в рецепции и передаче сигналов. Рецепторы часто служат точкой приложения действия гормонов, биологически активных веществ, через рецепторы происходит включение и выключение генов.

2 вопрос.

Сцепленное наследование — феномен скоррелированного наследования определённых состояний генов, расположенных в одной хромосоме.

Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах.

Возможны следующие генотипы и фенотипы:

XHXH - Нормальная женщина

XHXh - Нормальная женщина (носитель)

XHy - Нормальный мужчина

XhY - Мужчина - гемофилитик

Особей женского пола, гетерозиготных по любому из сцепленных с полом признаков, называют носителями соответствующего рецессивного гена. Они фенотипически нормальны, но половина их гамет несет рецессивный ген. Несмотря на наличие у отца нормального гена, сыновья матерей - носителей с вероятностью 50% будут страдать гемофилией.

НАСЛЕДОВАНИЕ ПОЛИГЕННОЕ

Тип наследования признаков, обусловленных действием многих генов, каждый из которых оказывает лишь слабое действие. Фенотипически проявление полигенно обусловленного признака зависит от условий внешней среды. У потомков наблюдается непрерывный ряд вариаций количественного проявления подобного признака, а не появление четко различающихся по фенотипу классов. В ряде случаев при блокировании отдельного гена признак не проявляется вообще, несмотря на его полигенную обусловленность. Это свидетельствует о пороговом проявлении признака.

3 вопрос.

Группа: Vermes

Тип: Platodes

Класс: Cestoidea

Отряд: Pseudophyllidea

Вид: Diphyllobothrium latum

Диагностические признаки: длина 7-10 м. сколекс лишен присосок. Прикрепляется к стенкам кишок при помощи 2 присасывательных бороздок – ботрий. Проглотиды в ширину больше, чем в длину. Матка имеет форму в виде петель, образующих розетку. Отверстие матки расположено у переднего края проглотиды. Яйца овальные, желтовато-коричневого цвета. Имеется крышечка.

Жизненный цикл: смена 2 промежуточных хозяев. Основные хозяева – человек и плотоядные млекопитающие. Первый промежуточный хозяин – циклоп, второй - рыба. Яйца должны попасть в воду, в воде из яйца освобождается свободно плавающая личинка – корацидий, снабженная 3 парами крючьев. Для дальнейшего развития корацидий должен быть проглочен 1 промежуточным хозяином. В кишках рачка корацидий теряет реснички и в виде онкосферы проникает в полость тела. Здесь он превращается в процеркоид. Если рачка проглатывает рыба, то в ее мускулатуре процеркоид превращается в плероцеркоид. Таким образом инвазионной стадией для человека является плероцеркоид.

Патогенное значение: ботриями лентец защемляет слизистую оболочку кишки, что приводит к омертвлению тканей. Клубки из стробил нескольких гельминтов могут повлечь за собой кишечную непроходимость. Вызывает общую слабость и истощение.

43 билет.

1 вопрос.

Основные методы изучения генетики человека:

генеалогический;

близнецовый;

цитогенетический метод;

популяционно-статистический метод;

Генеалогический метод основан на составлении родословной человека и изучении характера наследования признака. Это самый давний метод. Суть его состоит в установлении родословных связей и определении доминантных и рецессивных признаков и характера их наследования. Особенно эффективен этот метод при исследовании генных мутаций.

Метод включает два этапа: сбор сведений о семье за возможно большее число поколений и генеалогический анализ. Родословная составляется, как правило, по одному или нескольким признакам. Для этого собираются сведения о наследовании признака среди близких и дальних родственников.

Представителей одного поколения располагают в одном ряду в порядке их рождения.

Далее начинается второй этап – анализ родословной с целью установления характера наследования признака. В первую очередь устанавливается, как проявляется признак у представителей разных полов, т.е. сцепленность признака с полом. Далее определяется, является ли признак доминантным или рецессивным, сцеплен ли он с другими признаками и т.д. При рецессивном характере наследования признак проявляется у небольшого числа особей не во всех поколениях. Он может отсутствовать у родителей. При доминантном наследовании признак часто встречается практически во всех поколениях.

Характерной особенностью наследования признаков, сцепленных с полом, является их частое проявление у лиц одного пола. В случае, если этот признак доминантный, то он чаще встречается у женщин. Если признак рецессивный, то в этом случае он чаще проявляется у мужчин.

Анализ многочисленных родословных и характер распространения признака в обширной человеческой популяции помогли генетикам установить характер наследования многих нормальных признаков человека, таких как курчавость и цвет волос, цвет глаз, веснушчатость, строение мочки уха и т.д., а также такие аномалии, как дальтонизм, серповидно-клеточная анемия и др.

Таким образом, с помощью метода родословных устанавливается зависимость признака от генетического материала, тип наследования (доминантный, рецессивный, аутосомный, сцепленный с половыми хромосомами), наличие сцепления генов, зиготность (гомозиготность или гетерозиготность) членов семьи, вероятность наследования гена в поколениях, тип наследования признака. При аутосомно-доминантном наследовании (появление признака связано с доминантным геном) признак, как правило, проявляется в каждом поколении (наследование по горизонтали). При аутосомно-рецессивном наследовании признак проявляется редко, не в каждом поколении (наследование по вертикали), однако, в родственных браках больные дети рождаются чаще. При наследовании, сцепленном с полом, частота проявления признака у особей разного пола неодинакова.

Близнецовый метод основан на изучении фенотипа и генотипа близнецов для определения степени влияния среды на развитие различных признаков. Среди близнецов выделяются однояйцевые и двуяйцевые.

Однояйцевые близнецы (идентичные) образуются из одной зиготы, разделившейся на ранней стадии дробления на две части. В этом случае одна оплодотворенная яйцеклетка дает начало не одному, а сразу двум зародышам. Они имеют одинаковый генетический материал, всегда одного пола, и наиболее интересны для изучения. Сходство у таких близнецов почти абсолютное. Мелкие различия могут объясняться влиянием условий развития.

Двуяйцевые близнецы (неидентичные) образуются из различных зигот, в результате оплодотворения двух яйцеклеток двумя сперматозоидами. Они похожи друг на друга не более чем родные братья или сестры, рожденные в разное время. Такие близнецы могут быть однополыми и разнополыми.

Близнецовый метод позволяет определить степень проявления признака у пары, влияние наследственности и среды на развитие признаков. Все различия, которые проявляются у однояйцевых близнецов, имеющих одинаковый генотип, связаны с влиянием внешних условий. Большой интерес представляют случаи, когда такая пара была по каким-то причинам разлучена в детстве и близнецы росли и воспитывались в разных условиях.

Изучение разнояйцевых близнецов позволяет проанализировать развитие разных генотипов в одинаковых условиях среды. Близнецовый метод позволил установить, что для многих заболеваний значительную роль играют условия среды, при которых происходит формирование фенотипа.

Например, такие признаки как группа крови, цвет глаз и волос определяются только генотипом и от среды не зависят. Некоторые заболевания, хотя и вызываются вирусами и бактериями, в некоторой степени зависят от наследственной предрасположенности. Такие заболевания, как гипертония и ревматизм, в значительной степени определяются внешними факторами и в меньшей степени – наследственностью.

Таким образом, близнецовый метод позволяет выявить роль генотипа и факторов среды в формировании признака, для чего изучаются и сравниваются степени сходства (конкордантность) и различий (дискордантность) монозиготных и дизиготных близнецов

Цитогенетический метод заключается в микроскопическом исследовании структуры хромосом и их количества у здоровых и больных людей. Из трех типов мутаций под микроскопом могут обнаруживаться лишь хромосомные и геномные мутации. Наиболее простым методом является экспресс-диагностика – исследование количества половых хромосом по Х-хроматину. В норме у женщин одна Х-хромосома в клетках находится в виде тельца хроматина, а у мужчин такое тельце отсутствует. При трисомии по половой паре у женщин наблюдаются два тельца, а у мужчин – одно. Для идентификации трисомии по другим парам исследуется кариотип соматических клеток и составляется идиограмма, которая сравнивается со стандартной.

Хромосомные мутации связаны с изменением числа или структуры хромосом. Из них под микроскопом при специальном окрашивании хорошо выявляются транслокации, делеции, инверсии. При транслокации или делеции хромосомы соответственно увеличиваются или уменьшаются в размере. А при инверсии меняется рисунок хромосомы (чередование полос).

Хромосомные мутации могут являться маркерами в цитогенетической методике исследования того или иного заболевания. Кроме того, этот метод используется для определения поглощенных людьми радиационных доз и в других научных исследованиях.

Популяционно-статистический метод дает возможность рассчитать в популяции частоту встречаемости нормальных и патологических генов, определить соотношение гетерозигот – носителей аномальных генов. С помощью данного метода определяется генетическая структура популяции (частоты генов и генотипов в популяциях человека); частоты фенотипов; исследуются факторы среды, изменяющие генетическую структуру популяции. В основе метода лежит закон Харди–Вайнберга, в соответствии с которым частоты генов и генотипов в многочисленных популяциях, обитающих в неизменных условиях, и при наличии панмиксии (свободных скрещиваний) на протяжении ряда поколений остаются постоянными. Вычисления производятся по формулам: р + q = 1, р2 + 2pq + q2 = 1. При этом р – частота доминантного гена (аллеля) в популяции, q – частота рецессивного гена (аллеля) в популяции, р2 – частота гомозигот доминантных, q2 – гомозигот рецессивных, 2pq – частота гетерозиготных организмов. Используя этот метод, можно также определять частоту носителей патологических генов.

2 вопрос.

А ) Гликолиз – первый и самый древний этап диссимиляции (анаэробный).

- возник ранее, чем растительный мир занял свою эволюционную нишу.

- самый надежный механизм извлечения энергии.

- но менее эффективный энергетический механизм.

- в ходе гликолиза клетка может запасти только 2 молекулы АТФ.

-в анаэробных условиях пируват переходит в лактат.

Тканевое дыхание – самый эффективный и сложный из этапов диссимиляции (протекает в митохондриях).

- аэробный процесс.

- появился на более поздних этапах, после возникновения растений.

- самый эффективный энергетический механизм, но зависящий от присутствия кислорода.

- в ходе тканевого дыхания клетка способна запасти 36 молекул АТФ.

Б) Энергообразующая система клетки.

-Состоит из лизосом и митохондрий.

-Служит основным источником энергии клетки в виде АТФ.

-В ней происходят процессы диссимиляции(гликоли и тканевое дыхание).

В) Фотосинтез – механизм, благодаря которому гетеротрофы получили возможность эволюционировать.

Отличие фотосинтеза от дыхания:

- фотосинтез происходит в хлоропластах.

- из неорганических веществ, синтезируются органические.

- в атмосферу выделяется кислород.

- необходим свет.

Сходство:

-образуется 38 молекул АТФ.

Г)Сопряженный с окислением процесс образования АТФ – окислительное фосфорилирование.

- в ходе этого окисления часть энергии переходит в энергию макроэргических связей.

Д) Лихорадка – защитная реакция организма направленная, как правило, на борьбу с чужеродным фактором. Усиление окисления сопровождается усилением фосфорилирования – достигается дополнительный приток энергии.

Гипертермия – пагубный процесс, сопровождающийся разобщением процессов окисления и фосфорилирования – перегрев организма не сопровождающийся накоплением дополнительной энергии.

Е) Второй закон термодинамики для открытых систем.

Энтропия возрастает – система стремится самопроизвольно перейти из менее вероятного в более вероятное состояние.

Ж) Энтропия – функция состояния, изменение которой равно теплоте подведенной или отданной системой в обратимом процессе деленной на температуру, при которой осуществлялся процесс.

З) Космическая роль зеленых растений.

- зеленые растения создали запас кислорода на нашей планете, благодаря которому стала возможна дальнейшая эволюция.

- К.А. Тимирязев раскрыл космическую роль растений показав, что необходимые для диссимиляции гетеротрофов вещества создаются и запасаются пигментом хлорофиллом зеленых растений.

- только растения способны использовать неорганические вещества для синтеза органических (глюкоза) и выделять при этом в атмосферу кислород, необходимый гетеротрофам.

И) Митохондрия – самостоятельный «организм». Она состоит из наружной мембраны, внутренней мембраны, крист и матрикса (митозоль). Они участвуют в процессе клеточного дыхания и запасании для клетки энергии в виде молекул АТФ.

Эндосимбиотическая теория возникновения митохондрий:

Митохондрии – бывшие прокариоты, вступившие в симбиоз с древними эукариотическими клетками.

К) Все энергетические превращения в организме переходят в тепло. Для человека свойственна гомойотермия – сохранение относительно постоянной температуры тела. Температурный гомеостаз = тепловой гомеостаз. Температурный гомеостаз имеет существенные особенности на разных этапах онтогенеза.

Человек – термодинамическая открытая система, находящаяся в постоянном термодинамическом неравновесии со средой.

Центральным звеном, ответственным за терморегуляцию считают гипоталамус.

Энергетический гомеостаз организма человека представляет собой колебательную ритмическую систему.

3 вопрос.

Биогенетический закон Геккеля-Мюллера: каждое живое существо в своем индивидуальном развитии (онтогенез) повторяет в известной степени формы, пройденные его предками или его видом (филогенез).

Онтогене́з — индивидуальное развитие организма от оплодотворения (при половом размножении) или от момента отделения от материнской особи (при бесполом размножении) до смерти.

У многоклеточных животных в составе онтогенеза принято различать фазы эмбрионального (под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития, а у живородящих животных пренатальный (до рождения) и постнатальный (после рождения) онтогенез.

Филогене́з — историческое развитие организмов.

В биологии филогенез рассматривает развитие биологического вида во времени. Филогенез рассматривает эволюцию в качестве процесса, в котором генетическая линия — организмы от предка к потомкам — разветвляется во времени, и её отдельные ветви могут специализироваться относительно общего предка, сливаться в результате гибридизации или исчезать в результате вымирания.

44 билет.

1 вопрос.

Онтогенез протекает в конкретных условиях окружающей среды, и на любом его этапе организм наитеснейшим образом взаимосвязан со средой. Под средой понимают совокупность конкретных абиотических и биотических факторов (условий), в которых обитает данная особь (популяция, вид). Эти взаимосвязи организма и среды складываются и изменяются в процессе эволюции. Развитие каждого конкретного организма - это, по сути, формирование фенотипа (совокупности внешних и внутренних признаков), или реализация генотипа в конкретных условиях среды. Фенотип организма не только обусловлен генотипом, обеспечивающим материальную преемственность между поколениями, но и зависит от факторов внешней среды, в которой формируется и существует данный организм.

В течение всего онтогенеза происходит взаимодействие между генотипом и факторами среды, которые в конечном счёте и детерминируют все биологические признаки данного организма. При этом обе эти группы факторов имеют одинаково важное значение, хотя для отдельных признаков доминирующей может выступать одна из двух групп факторов. Так, группы крови (фенотипический признак) имеют у человека исключительно генетическую природу: при любых условиях среды данный генотип проявляется одинаково и обусловливает строго определённую группу крови. С другой стороны, существуют признаки, обусловленные исключительно факторами среды. Например, количество эритроцитов в циркулирующей крови у людей с разнообразными генотипами прямо зависит от высоты местности проживания над уровнем моря: с увеличением высоты их число у всех возрастает. Тем не менее сама способность к изменению числа эритроцитов в зависимости от парциального давления кислорода в атмосферном воздухе обусловлена генетически. Однако подобные крайние случаи очень редки. В большинстве случаев различия особей определяются факторами обеих групп - наследственными и средовыми. Так, различия в росте обусловлены как генетически, так и конкретными средовыми факторами (климат, характер питания и т.п.).

Значительными могут быть влияния абиотических факторов, или условий среды (атмосферное давление, излучение, температура, влажность, газовый состав, степень освещённости и др.). При снижении температуры с +20° до +15°С зародыши лягушки не могут развиваться дальше стадии ней-рулы. Прекращение доступа кислорода к эмбриону аскариды приостанавливает его развитие. Такие реакции позволяют характеризовать подобные изменения внешней среды как неблагоприятные. К последним можно отнести также действие сильных доз облучения. Если неблагоприятные изменения будут сопутствовать многим поколениям, то может произойти отбор на повышение сопротивляемости этим факторам, при условии, что такие организмы из поколения в поколение не будут погибать.

В процессе эволюции выработались приспособления, уменьшающие зависимость развивающегося организма от прямого воздействия факторов среды. Эмбрион характеризуется определённой степенью автономности, которая увеличивается у более высокоорганизованных животных и достигает максимума у млекопитающих. Эмбрион млекопитающих, развиваясь в утробе материнского организма и осуществляя опосредованную взаимосвязь с внешней средой через плаценту, максимально защищен от прямого действия факторов среды. Его развитие характеризуется максимальной автономизацией.

Часто характер изменений развивающегося организма, вызываемых либо наследственными, либо средовыми факторами, бывает сходным. Например, у женщин, перенесших краснуху на ранних сроках беременности, часто рождаются глухонемые дети или дети с врождённой катарактой, причём эти аномалии не отличимы от соответствующих аномалий, обусловленных генетически. Изменения фенотипа, сходные с изменениями генетической природы, но обусловленные только факторами внешней среды, получили название фенокопий.

Дети это цветы жизни.И как за всякими цветами, за детьми нужен уход.Будущим родителям очень полезно будет почитать интернет журнал для родителей http://lyalya.kz на котором вы сможете узнать всю необходимую информацию.





Дата публикования: 2015-10-09; Прочитано: 475 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.017 с)...