Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Можно разложить на два динамических вектора, вращающихся уже вокруг двух других центров, — это векторы



И

На рисунке — и два постоянных неизменных вектора

,

Лежащих на оси квантования.

.

Кубитной модели элементарного сознания может еще помочь теория квантовых вычислений. Сейчас уже определен набор основных логических операций, с помощью которых можно реализовать любые квантовые вычисления. Умение выполнять эти операции делает квантовый компьютер «разумным». Это те операции над кубитами, которые позволяют квантовому компьютеру выполнять «осмысленные» действия, в частности, использовать запутанные состояния для выполнения вычислений. По сути, все логические операции сводятся к вращению вектора состояния кубита, его движению по сфере Блоха. То есть для того, чтобы наше элементарное сознание (наш кубит) стал «умным», он должен уметь выполнять несколько основных логических операций, с помощью которых можно реализовать любую последовательность «рассуждений». Поскольку сознание ранее было определено как способность воплощать допустимые состояния, кубит будет считаться «разумным», обладающим элементарным сознанием, если он в состоянии реализовать последовательности основных логических операций (может вращать по своему усмотрению вектор состояния по сфере Блоха).

Более подробное рассмотрение основного разложения матрицы плотности целесообразно начать с самого простого случая двухуровневой системы (кубита). Напомню также, что все матрицы плотности — эрмитовы.

В матричном анализе доказывается утверждение, что всякую эрмитову матрицу 2 × 2 можно однозначно записать в виде вещественной линейной комбинации единичной матрицы и трех матриц с нулевым следом, так называемых матриц Паули, в частности, любая матрица плотности 2 × 2 представляется в виде:

ρ = 1/2 (Е + ασ x + βσ y + γσ z),

где Е — единичная матрица, α, β, γ — вещественные числа, а σ x, σ y и σ z — матрицы Паули [см. (3.12)]. Мы уже пользовались такой формой записи в выражении (3.11).

Этот результат для матриц 2 × 2 является частным случаем хорошо известного в квантовой теории общего утверждения, что любая матрица плотности произвольной размерности может быть записана в виде[98]:

ρ ε = (1 — ε) Md + ε ρ 1, (3.14)

где d = 2 N — размерность гильбертова пространства системы, состоящей из N подсистем; Md = 1 d/d — максимально смешанное состояние (нормализованная единичная матрица плотности, след которой равен 1); 1 d единичная матрица размерностью d; ρ 1 — произвольная матрица плотности; ε — вещественный параметр (0 ≤ ε ≤ 1).

В форме (3.14) часто анализируют псевдочистые состояния[99], когда ρ 1 = |ψñáψ|.

ρ ε = (1 — ε) Md + ε|ψñáψ|.

Выражение (3.14) можно переписать в виде:

ρ ε = Md + ε(ρ 1 Md). (3.15)

То есть любая матрица плотности может быть представлена в виде суммы матрицы максимально смешанного состояния Md (с единичным следом) и матрицы с нулевым следом (ρ 1 Md), напомню, что след у ρ 1 тоже равен единице.

Таким образом, состояние произвольной системы имеет двуединую природу, содержит в своей структуре две качественно различные составляющие: одна часть неизменная, вечная (максимально смешанное состояние), и вторая часть динамическая (если система динамическая, параметр ε может быть, например, функцией времени).

Рассмотрим более детально, что такое максимально смешанное состояние. Наверное, это будет легче понять на примере кубита. Только для начала мы запишем вектор состояния кубита |ψñ = a |0ñ + b |1ñ в виде нужной матрицы плотности. Этот вектор состояния зависит от четырех вещественных параметров (a и b — комплексные числа). Число параметров можно уменьшить до двух, воспользовавшись двумя дополнительными условиями, налагаемыми на вектор состояния, — условием нормировки | a |2+ | b |2= 1 и одним из постулатов квантовой механики, согласно которому состояния не меняются, если их умножить на фазовый множитель exp(± iφ). То есть, например, состояния |0ñ и exp(iφ) |0ñ тождественны. Это следствие того факта, что модуль комплексной экспоненты равен единице.

Следовательно, необходимы лишь два независимых вещественных параметра, чтобы однозначно задать вектор состояния кубита. Обычно в качестве таких параметров выбирают два угла θ и φ, которые однозначно определяют точку на сфере Блоха (см. рис. 1). В этом случае

a = exp(— iφ /2) cos(θ /2)

b = exp(iφ /2) sin(θ /2),

а вектор состояния записывается в виде:

|ψñ = exp(— iφ /2)cos(θ /2) |0ñ + exp(iφ /2)sin(θ /2) |1ñ. (3.16)

Матрица плотности ρ тогда равна сумме двух матриц ρ 1 и ρ 2:

. (3.17)

Нам еще пригодится вектор состояния

|ψñ = cos(θ /2) |0ñ+sin(θ /2) |1ñ, (3.18)

и соответствующая ему матрица плотности:

. (3.19)

Можно заметить, что (3.16) получается из (3.18) унитарным преобразованием

,

то есть чистым вращением вектора состояния (3.18), которое характеризуется параметром φ. Несложно определить, в чем состоит физическое отличие векторов состояния (3.16) и (3.18). Они связаны соотношением |ψñ rot = U |ψñ, которое означает переход между неподвижной и вращающейся системой координат. То есть вектор (3.18)мы записали для внутреннего состояния системы — он описывает то, что происходит с точки зрения самой системы. Система «чувствует», что она переходит из одного состояния в другое, и никаких других изменений для нее не существует. Это вид «изнутри» системы. В этом случае ее вектор состояния характеризуется лишь одним вещественным параметром θ. Можно предположить, что это собственное внутреннее время системы, то есть параметр, с которым меняется ее внутреннее состояние.

А состояние (3.16) описывает эволюцию системы в лабораторной (неподвижной) системе координат, связанной с внешним наблюдателем. Это вид «снаружи». Можно пояснить данный момент еще следующим образом. При эволюции системы вектор состояния при любом его положении остается для самой системы осью квантования. Но для внешнего наблюдателя, со своей системой отсчета и выбранной уже им осью квантования (обычно за нее принимают ось Z), вектор состояния будет перемещаться по сфере Блоха и поворачиваться на угол φ.

Максимально смешанное состояние [первая матрица в правой части выражений (3.17) или (3.19)] определяет две важные характеристики системы. Во-первых — центр сферы Блоха, то есть точку, равную сумме диаметрально противоположных точек, в которых вектор состояния «протыкает» сферу Блоха в любом из своих положений[100], — это ядро, центр системы, из которого выходит сам вектор состояния. Во-вторых, максимально смешанное состояние задает ось квантования, поскольку составляет на этой оси постоянный и неизменный отрезок между двумя (для кубита) точками. Переходя в систему отсчета, связанную с вектором состояния (во вращающуюся систему координат), этот вектор становится осью внутреннего мира системы, на которую с равной вероятностью, с равной возможностью реализации «нанизаны» все допустимые состояния системы. В нашем простейшем случае это два допустимых состояния, которые всегда остаются в распоряжении системы, в каком бы положении ни находился вектор состояния. Но они существуют только как потенциальные возможности, а конкретная реализация той или иной альтернативы зависит уже от динамической части матрицы плотности.

Если рассматривать кубит в качестве элементарного сознания, то его внутреннюю «ось мира», то есть матрицу плотности

, (3.20)

можно назвать простейшей духовной монадой элементарного сознания, поскольку это «неуничтожимая» часть сознания.

Замечу, что ядром духовной структуры, монадой, может «наделить» только система, находящаяся в пространстве состояний большей размерности. Так, матрица плотности (3.20) получается, если мы берем частичный след [см. выражение (3.5)] по одной из подсистем максимально запутанного двусоставного чистого состояния (любого из четырех так называемых белловских состояний). Можно сказать, что подсистемы получают «дары Духа», набор своих допустимых состояний, от большей системы, частью которой они являются. Подсистемы «по образу и подобию» исходной системы наделяются допустимыми состояниями в пространстве состояний меньшей размерности.

Или, если сказать несколько иначе, матрица плотности (3.20) не является чистым состоянием, она не способна существовать в виде замкнутой системы, а может быть только частью большой системы, причем находиться с этой системой в нелокальном максимально запутанном состоянии.

Стоит отметить, что любое чистое состояние всегда имеет только одно ненулевое собственное значение, равное единице. Ни одна замкнутая система не может иметь других собственных значений, и единица здесь означает само существование системы как Единицы.

В этом отношении собственное значение, равное минус единице — нечто неприемлемое, «мерзкое» для системы. Это отрицание ее духовной сути, это посягательство на самое ценное — духовное ядро системы, на пространство ее возможных состояний. Да и не может замкнутая система, как единое целое, иметь отрицательное собственное значение — как было оно положительной Единицей, так и останется. А вот для структурных частей системы такая возможность появляется. Динамическая часть матрицы плотности (3.19), то есть матрица

, (3.21)

характеризуется именно этим свойством, она имеет два собственных значения: +1 и —1.

Наличие двух собственных значений, одно из которых равно минус единице, означает, что матрица описывает состояние, которое имеет двойственную природу, единство и борьбу противоположностей, поскольку отрицательное собственное значение — это не просто что-то плохое, негативное, а абсолютная противоположность, несовместимость с исходным состоянием, его полное отрицание. Таким образом, по поводу сознания, о котором мы ведем речь, можно сказать, что формирование материальной оболочки системы сопровождается появлением двух нравственных начал, лежащих в основе тварного мира — добра и зла.

Что такое «зло», можно попытаться понять на более простом примере. Предположим, у нас есть чисто классическое стационарное состояние, описываемое вектором |ψñ = |0ñ. Ему соответствует матрица плотности

,

которая, как и все остальные, может быть представлена в виде суммы матрицы, пропорциональной единичной, и матрицы с нулевым следом:

.

Одно из собственных значений второй матрицы, равное минус единице, «уничтожает» одно из допустимых состояний «ядра» системы. При этом как бы обедняется «душа» системы, часть ее — в данном случае половина — уничтожается, а вторая половина «огрубляется» до материального, «телесного», классического состояния. Если бы в последней матрице было два таких отрицательных собственных значения, то получился бы тождественный нуль, исходное состояние вообще перестало бы существовать, системы бы просто не было как таковой.

В матрице (3.21) собственные значения (+1 и —1) периодически меняются местами, то есть периодически «уничтожается» то или другое потенциальное состояние «ядра» системы, а второе — переходит в классическое «тварное» состояние.





Дата публикования: 2015-10-09; Прочитано: 230 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...