Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Ацетилхолин



Ацетилхолин был первым из открытых медиаторов. По своему химическому строению он представляет собой соединение двух молекул – азотсодержащего холина и остатка уксусной кислоты. Синтез ацетилхолина осуществляется в основном в пресинаптических окончаниях с помощью фермента холинацетилтрансферазы. Затем медиатор переносится в пустые везикулы и хранится в них до момента выброса.

Ацетилхолин в качестве медиатора работает в трех функциональных блоках нервной системы. Это нервно-мышечные синапсы, периферическая часть вегетативной нервной системы и относительно немногочисленные области ЦНС.

Ацетилхолин является медиатором мотонейронов нервной системы, локализованных в передних рогах серого вещества спинного мозга и двигательных ядрах черепных нервов. Их аксоны направляются к скелетным мышцам и, разветвляясь, образуют с ними нервно-мышечные синапсы. При этом один аксон может устанавливать контакт с 5-5000 мышечных волокон; но каждое мышечное волокно управляется только одним синапсом. Размер нервно-мышечных синапсов в десятки раз больше, чем синапсов в ЦНС. Пришедший по аксону мотонейрона даже одиночный ПД вызывает выделение в синапсе очень значительного количества ацетилхолина. В результате развивающаяся на постсинаптической мембране деполяризация оказывается настолько велика, что всегда запускает ПД мышечной клетки. Этот ПД, в свою очередь, приводит к выбросу Са2+ из каналов эндоплазматической сети, активации двигательных белков и сокращению поперечнополосатого волокна.

В вегетативной нервной системе ацетилхолин в качестве медиатора вырабатывается нейронами, находящимися в ЦНС, а также в ганглионарных клетках парасимпатической части. Следовательно, при помощи этого медиатора передаются сигналы внутри вегетативных ганглиев, а также парасимпатические влияния непосредственно на внутренние органы.

В ЦНС ацетилхолин вырабатывается частью нейронов ретикулярных ядер моста, интернейронами базальных ганглиев (точнее, полосатого тела) и некоторых других локальных зон. Рассматривается роль этого медиатора в регуляции уровня бодрствования, системах памяти, двигательных системах.

Выделяясь из пресинаптического окончания, ацетилхолин действует на постсинаптические рецепторы. Рецепторы эти не однородны и различаются как местом локализации, так и рядом существенных свойств. Выделено два их типа, названных по своим агонистам. Первый тип, помимо ацетилхолина, возбуждается под действием алкалоида табака никотина (никотиновые рецепторы или Н-холинорецепторы). Второй тип активируется ацетилхолином и токсином мухомора мускарином (мускариновые рецепторы или М-холинорецепторы). Рассмотрим их подробнее.

Никотиновые рецепторы являются классическим примером ионотропных рецепторов, т.е. их ионный канал входит в состав рецептора и открывается немедленно после присоединения ацетилхолина. Канал этот характеризуется универсальной проницаемостью для положительно заряженных ионов. Однако, в обычных условиях (при открывании на фоне ПП) через их каналы наблюдается в основном входящий Na+-ток, вызывающий деполяризацию мембраны и возбуждение нейрона.

Н-холинорецепторы расположены на постсинаптической мембране поперечно-полосатых волокон скелетных мышц (нервно-мышечные синапсы), в синапсах вегетативных ганглиев и в меньшем, чем мускариновые рецепторы, количестве в ЦНС. Областью, наиболее чувствительной к никотину, являются вегетативные ганглии (особенно симпатические). Поэтому первые попытки курения приводят в значительным нарушениям в деятельности внутренних органов, скачкам кровяного давления, тошноте и т.п. По мере привыкания сохраняется в основном симпатический компонент действия – т.е. никотин начинает работать преимущественно как стимулятор многих систем организма. Присутствует также и центральное (на головной мозг) активирующее влияние ацетилхолина. Сверхдозы никотина (50 и более мг) вызывают резкое учащение сердцебиения, судороги и остановку дыхания.

Используясь во время курения как слабый наркотический препарат-стимулятор, никотин вызывает развитие не только привыкания, но и зависимости – ситуации, когда организм включает поступающий извне препарат в свой метаболизм, т.е. "рассчитывает" на его постоянный приток. При отказе от препарата происходит сбой в использующих его системах мозга. В результате наблюдается резкое ухудшение самочувствия, депрессия и т.п. (абстинентный синдром или синдром отмены). Таким образом, человеку, попавшему в зависимость, наркотик необходим уже не столько для того, чтобы почувствовать бодрость и эйфорию, сколько для возврата хотя бы к относительно "нормальному" уровню жизнедеятельности.

Наиболее известным антагонистом никотиновых рецепторов является d-тубокурарин – активное действующее начало яда, приготовляемого из некоторых южноамериканских растений. Основным его местом приложения являются нервно-мышечные синапсы. При этом происходит последовательное расслабление мышц пальцев, затем глаз, рук и ног, шеи, спины и, наконец, дыхательных. Длительность действия d-тубокурарина относительно невелика – 30-60 минут. Если все это время поддерживать искусственное дыхание, то после окончания срока действия тубокурарина какие-либо существенные повреждения организма отсутствуют.

Еще более сильное влияние на нервно-мышечный синапс оказывают нейротоксины змей. Например яд кобры содержит a-нейротоксин, практически необратимо связывающийся с никотиновым рецептором и блокирующий его. В яде присутствуют также b-нейротоксин, которые тормозит выделение медиатора из пресинаптического окончания.

Антагонисты никотиновых рецепторов головного мозга циклодол и акинетон применяют для ослабления симптомов паркинсонизма. Их введение снижает характерные для этого заболевания проявления двигательных нарушений.

Мускариновые рецепторы являются метаботропными. Они связаны с G-белками, и присоединение к ним ацетилхолина приводит к синтезу вторичных посредников.

Эти рецепторы находят как в ЦНС, так и на периферии, где они расположены на органах-мишенях парасимпатической нервной системы. Ионные последствия возбуждения мускариновых рецепторов весьма разнообразны. Так, в сердце наблюдается увеличение проводимости для ионов К+, что приводит к гиперполяризации и снижению частоты сокращений. В случае гладких мышц отмечаются изменения проводимости как для К+, так и для Na+; соответственно, возможна гипер- или деполяризация – в зависимости от конкретного органа.

В ЦНС отмечается снижение проводимости для К+ (деполяризация, возбуждающее действие). Вместе с тем, синапсы, содержащие мускариновые рецепторы, могут располагаться как на тормозных, так и на возбуждающих нейронах коры, базальных ганглиев и др. В связи с этим последствия блокады либо активации мускариновых рецепторов на поведенческом уровне оказываются очень индивидуальны.

В периферической нервной системе эффекты мускарина носят преимущественно парасимпатический характер. При отравлении мухоморами наблюдается тошнота, повышенное пото- и слюноотделение, слезотечение, боли в животе, снижение кровяного давления и сердечной активности. Количество мускарина, вызывающее развитие коматозного состояния и смерть, составляет 0,5 г.

Классическим антагонистом мускариновых рецепторов является атропин – алкалоид белены и дурмана. Его периферические эффекты прямо противоположны действию мускарина. Под влияние атропина происходит снижение тонуса мышц желудочно-кишечного тракта, учащается сердцебиение, прекращается слюноотделение ("сухость во рту"). Чрезвычайно характерно расширение зрачков. Наблюдаются и центральные (опосредуемые через ЦНС) эффекты: двигательное и речевое возбуждение, галлюцинации.

Вместе с тем, ряд антагонистов мускариновых рецепторов обладает успокаивающим действием. Например, такой препарат как амизил относят к транквилизаторам и применяют при двигательных расстройствах.

Инактивация ацетилхолина происходит непосредственно в синаптической щели. Ее осуществляет фермент ацетилхолинэстераза, разлагающая медиатор до холина и остатка уксусной кислоты. В дальнейшем холин всасывается в пресинаптическое окончание и может вновь использоваться для синтеза ацетилхолина.

Ацетилхолинэстераза имеет активный центр, узнающий холин, и еще один активный центр, отрывающий ацетильную группу от исходной молекулы. Именно последний чаще всего является местом атаки специфических блокаторов. В качестве примера можно привести эзерин (физостигмин) – алкалоид одного из видов африканских бобовых, вызывающий сужение зрачка, слюнотечение, замедление сердечного ритма.

Синтетическим аналогом эзерина является прозерин (неостигмин), применяемый при болезни миастении. Ее симптомами служат быстрая мышечная утомляемость, непроизвольное опускание век, замедленное жевание. Введение блокаторов ацетилхолинэстеразы ослабляет патологические проявления. Показано, что у значительной части больных миастенией число никотиновых рецепторов примерно на 70% меньше, чем в норме. Причина этого состоит в том, что иммунная система больного вырабатывает антитела к никотиновым рецепторам. Эти антитела ускоряют разрушение рецепторов на мембране, ослабляя передачу в нервно-мышечном синапсе. Заболевания такого рода называют аутоиммунными.

Прозерин и сходные с ним препараты называют обратимыми блокаторами ацетилхолинэстеразы, и их действие прекращается через несколько часов после введения. Кроме этого, существуют необратимые блокаторы того же фермента. В таком случае нарушающее работу ацетилхолинэстеразы вещество вступает с белком в устойчивую химическую связь и выводит его из строя. Такими агентами-блокаторами являются различные нервно-паралитические газы (зарин и т.п.). Легко проникая через все барьеры организма, они вызывают судороги, потерю сознания и паралич. Смерть наступает от остановки дыхания. Для немедленного ослабления эффектов газов рекомендуется использование атропина; для восстановления деятельности ацетилхолинэстеразы – особые вещества-реактиваторы, отрывающие блокатор от фермента.





Дата публикования: 2015-10-09; Прочитано: 1315 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...