Студопедия.Орг Главная | Случайная страница | Контакты | Заказать  
 

Энергетические процессы в термоэлементах



В реальных термоэлектрических устройствах используются не отдельные полупроводниковые стержни, а термоэлементы, состоящие из двух стержней п- и р-типа, называемых ветвями (рис. 5). Ветви соединяются между собой металлической коммутационной пластиной. При протекании тока указанной на рис. 5 полярности на спае 1 электроны из коммутационной пластины переходят в ветвь п-типа, а дырки — в ветвь р-типа. При этом один спай охлаждается, а на противоположных спаях электроны и дырки выходят из ветвей в коммутационные пластины и нагревают их. Обычно нагревающиеся — горячие — спаи путем интенсивного теплоотвода поддерживают при температуре, более или менее близкой к температуре окружающей среды. Тогда на холодном спае можно получить существенно более низкую температуру.


Рис.5 Действие эффекта Пельтье при протекании тока через полупроводники p- и n-типов проводимости.

Наличие перепада температуры на термоэлементе приводит к появлению на нем термо-ЭДС. Так как ветви имеют различные типы проводимости, термо-ЭДС ветвей складываются. Наконец, при протекании тока в ветви с разными температурами концов в объеме ветви возникает эффект Томсона. В полупроводниковых материалах, используемых в термоэлементах, абсолютная величина коэффициента термо-ЭДС растет с температурой. Поскольку в обеих ветвях носители тока движутся от холодного конца к горячему, тепло Томсона в них поглощается.

Таким образом, при работе термоэлемента имеют место все три термоэлектрических эффекта — Пельтье, Зеебека, Томсона. На них накладываются необратимые явления — выделение Джоулева тепла в объеме ветви и поток тепла, обусловленный градиентом температуры.

Совокупность этих эффектов определяет распределение температуры а ветви термоэлемента, его охлаждающую способность и другие характеристики. Для получения большего количества холода термоэлементы набираются в батареи (рис. 6). При этом они обычно соединяются последовательно в электрическую цепь и параллельно по отношению к тепловому потоку.

Эффект Пельтье лежит в основе работы термоэлектрического модуля (ТЭМ). Единичным элементом ТЭМ является термопара, состоящая из одного проводника p-типа и одного проводника n-типа. При последовательном электрическом соединении нескольких таких термопар теплота, поглощаемая на контакте типа n-p выделяется на контакте типа p-n. Термоэлектрический модуль представляет собой совокупность таких термопар, обычно соединяемых между собой последовательно по току и параллельно по потоку теплоты. Термопары помещаются между двух плоских керамических пластин (Рис.2). Количество термопар может изменяться в широких пределах - от нескольких единиц до тысяч пар, что позволяет создавать ТЭМ с холодильной мощностью от десятых долей ватт до сотен ватт. Наибольшей термоэлектрической эффективностью среди промышленно используемых для изготовления ТЭМ материалов обладает теллурид висмута, в который для получения необходимого типа и параметров проводимости добавляют специальные примеси, например, селен и сурьму.


Рис.6. Структура полупроводникового термоэлектрического модуля.

При прохождении через ТЭМ постоянного электрического тока образуется перепад температур между его сторонами: одна пластина (холодная) охлаждается, а другая (горячая) нагревается. При использовании ТЭМ необходимо обеспечить эффективный отвод тепла с его горячей стороны, например, с помощью воздушного радиатора или водяного теплообменника. Если поддерживать температуру горячей стороны модуля на уровне температуры окружающей среды, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже. Степень охлаждения будет пропорциональна величине тока, проходящего через ТЭМ. Внешний вид типового ТЭМ представлен на Рис.7.


Рис.7. Внешний вид термоэлектрического модуля.





Дата публикования: 2015-10-09; Прочитано: 227 | Нарушение авторского права страницы | Заказать написание работы



studopedia.org - Студопедия.Орг - 2014-2017 год. (0.009 с)...Наверх