Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Іі. Негативні фактори та їх вплив на людину 3 страница



По режиму роботи лазери поділяються на імпульсні і безупинної дії. Лазери можуть бути малої і середньої потужності, могутні і надпотужні. Велику потужність легше одержати в імпульсному режимі. Для обробки матеріалів у технологічних установках в імпульсі тривалістю порядку мілісекунд випромінюється енергія від одиниць до десятків джоулів. За рахунок фокусування досягається висока щільність енергії і можливість точної обробки матеріалів (різання, прошивання отворів, зварювання, термообробка).

Під дією лазерного випромінювання відбувається швидке нагрівання, плавлення і зварювання рідинних середовищ, що особливо небезпечно для біологічних тканин. Найбільш уразливі від дії лазера є очі і шкіра. Безупинне лазерне випромінювання робить в основному теплову дію, що приводить до згортання білка та випару тканинної рідини. В імпульсному режимі виникає ударна хвиля, імпульс стиску викликає ушкодження глибоко лежачих органів, що супроводжується крововиливами. Лазерне випромінювання впливає на біохімічні процеси. У залежності від енергетичної щільності опромінення може бути тимчасове осліплення або термічний опік сітківки ока, в інфрачервоному діапазоні - помутніння кришталика.

Ушкодження шкіри лазерним випромінюванням має характер термічного опіку з чіткими границями, оточеними невеликою зоною почервоніння. Можуть проявитися вторинні ефекти – реакція на опромінення: серцево-судинні розлади і розлади центральної нервової системи, зміни в складі крові й обміні речовин.

Гранично допустимі рівні інтенсивності лазерного опромінення залежать від характеристик випромінювання (довжини хвилі, тривалості і частоти імпульсів, тривалості впливу) і встановлюються таким чином, щоб виключити виникнення біологічних ефектів для всього спектрального діапазону і вторинних ефектів.

Ультрафіолетове випромінювання не сприймається органом зору. Жорсткі ультрафіолетові промені з довжиною хвилі менше 290 нм затримуються шаром озону в атмосфері. Промені з довжиною хвилі більше 290 нм, аж до видимої області, сильно поглинаються у середині ока, особливо в кришталику, і лише незначна частка їх доходить до сітківки. Ультрафіолетове випромінювання поглинається шкірою, викликаючи почервоніння (еритему) і активізує обмінні процеси і тканинний подих. Під дією ультрафіолетового випромінювання в шкірі утворюється меланин, що сприймається як засмага і захищає організм від надлишкового проникнення ультрафіолетових променів.

Ультрафіолетове випромінювання може привести до згортання (коагуляції) білків і на цьому заснована його бактерицидна дія. Профілактичне опромінення приміщень і людей строго дозованими променями знижує імовірність інфікації. Недостача ультрафіолету несприятливо відбивається на здоров'ї, особливо в дитячому віці. Від недостатку сонячного опромінення у дітей розвивається рахіт, у шахтарів з'являються скарги на загальну слабість, швидку стомлюваність, поганий сон, відсутність апетиту. Це зв'язано з тим, що під впливом ультрафіолетових променів у шкірі з провітаміну утворюється вітамін Д, який регулює фосфорно-кальцієвий обмін. Відсутність вітаміну Д приводить до порушення обміну речовин. У таких випадках (наприклад, під час полярної ночі на крайній Півночі) застосовується штучне опромінювання ультрафіолетом як у лікувальних цілях, так і для загального загартовування організму.

Надлишкове ультрафіолетове опромінення під час високої сонячної активності викликає запальну реакцію шкіри, що супроводжується сверблячкою, набряклістю, іноді утворенням міхурів і змін у шкірі й у більш глибоко розташованих органах.

Тривала дія ультрафіолетових променів прискорює старіння шкіри, створює умови для злоякісного переродження кліток.

Ультрафіолетове випромінювання від потужних штучних джерел (плазма зварювальної дуги, дугової лампи, дугового розряду короткого замикання і т.п.) викликає тяжкі ураження очей – електрофтальмію. Через кілька годин після впливу з'являється сльозотеча, спазм вік, різь і біль в очах, почервоніння і запалення шкіри і слизуватої оболонки вік. Подібне явище спостерігається також при перебуванні у сніжних горах через високий вміст ультрафіолету в сонячному світлі.

На виробництві установлюються санітарні норми інтенсивності ультрафіолетового опромінення, крім того обов'язковим правилом є застосування захисних засобів (окуляри, маски, екрани) від його впливу.

Інфрачервоне випромінювання утворює теплову дію. Воно досить глибоко (до 4 см) проникає у тканини організму, підвищує температуру шкіри, що опромінюється, та викликає різке почервоніння шкірних покривів. Надмірний вплив інфрачервоних променів при підвищеній вологості може викликати порушення терморегуляції, і привести до теплового удару. Тепловий удар – клінічно важкий симптомокомплекс, який характеризується головним болем, запамороченням, підвищенням частоти пульсу, утратою свідомості, порушенням координації рухів, судорогами. Перша допомога при тепловому ударі вимагає віддалення від джерела випромінювання, охолодження, створення умов для поліпшення кровопостачання головного мозку, лікарської допомоги.

Електричний струм – це упорядкований рух електричних зарядів. Сила струму в ділянці ланцюга прямо пропорційна різниці потенціалів на її кінцях і зворотно пропорційна її опору.

Доторкнувшись до провідника, що знаходиться під напругою, людина включає себе в електричний ланцюг, якщо він погано ізольований від землі чи одночасно торкається об'єкта з іншим значенням потенціалу. У цьому випадку через тіло людини проходить електричний струм.

Характер і глибина впливу електричного струму на організм людини залежить від його сили і роду струму, часу його дії, шляху проходження через тіло людини, фізичного і психологічного стану останнього. Так, опір людини в нормальних умовах при сухій неушкодженій шкірі складає сотні кілоом, але при несприятливих умовах може упасти до одного кілоома.

Граничним (відчутним) є струм величиною близько 1 мА. При більшому струмі людина починає відчувати неприємні хворобливі скорочення м'язів, а при струмі 12…15 мА вже не в змозі керувати своєю м'язовою системою і не може самостійно відірватися від джерела струму. Дія струму понад 25 мА на м'язові тканини веде до паралічу дихальних м'язів і зупинки дихання. При подальшому збільшенні струму може наступити фібриляція (судорожне скорочення) серця. Струм величиною у 100 мА вважають смертельним.

Змінний струм більш небезпечний, ніж постійний. Має значення те, якими частинами тіла людина торкається струмоведучої мережі. Найбільш небезпечні ті шляхи, при яких уражається головний чи спинний мозок (голова – руки, голова – ноги), серце і легені (руки – ноги). Будь-які електроремонтні роботи потрібно вести у далині від заземлених елементів устаткування (у тому числі водопровідних труб, труб і радіаторів опалення), щоб виключити випадковий дотик до них.

Підвищену небезпеку представляють приміщення з металевими, земляними підлогами, вологі приміщення. Особливо небезпечні – приміщення з парами кислот і лугів у повітрі. Безпечною для життя є напруга не вища 42 В для сухих, опалюваних з струмонепровідними підлогами приміщень без підвищеної небезпеки та не вище 36 В для приміщень з підвищеною небезпекою (металеві, земляні, цегельні підлоги, вогкість, можливість торкання заземлених елементів конструкцій), а також не вище 12 В для особливо небезпечних приміщень, що мають хімічно активне середовище, дві і більш ознаки приміщень з підвищеною небезпекою.

У випадку, коли людина знаходиться поблизу упалого на землю дроту, що знаходиться під напругою, виникає небезпека поразки кроковою напругою. Напруга кроку – це напруга між двома крапками ланцюга струму, що знаходяться одна від іншої на відстані кроку, на яких одночасно стоїть людина. Такий ланцюг створює струм, що розтікається по землі від дроту. Опинившись у зоні розтікання струму, людина повинна з'єднати ноги разом і не поспішаючи виходити з небезпечної зони так, щоб при пересуванні ступня однієї ноги не виходила цілком за ступню іншої. При випадковому падінні можна торкнутися землі руками, чим збільшити різницю потенціалів і небезпеку поразки.

Дія електричного струму на організм характеризується такими основними вражаючими факторами:

електричним ударом, що збуджує м'язи тіла та приводить до судорог, зупинці дихання і серця;

електричним опіком, який виникає у результаті виділення тепла при проходженні струму через тіло людини.

В залежності від параметрів електричного ланцюга і стану людини може виникнути почервоніння шкіри, опік з утворенням міхурів, обвуглюванням тканин. При розплавлюванні металу відбувається металізація шкіри з проникненням у неї шматочків металу.

Дія струму на організм зводиться до нагрівання, електролізу і механічному впливу. Це може служити поясненням важких наслідків електротравми за інших рівних умов. Особливо чутлива до електричного струму нервова тканина і головний мозок. Механічна дія струму приводить до розриву тканин, розшаруванню, ударної дії випаровування рідини з тканин організму.

При термічній дії відбувається перегрів і функціональний розлад органів на шляху проходження струму.

Електролітична дія струму виражається в електролізі рідини в тканинах організму, зміні складу крові.

Біологічна дія струму проявляється в роздратуванні і перенапрузі нервової системи.

При поразці людини електричним струмом потрібно негайно звільнити потерпілого від провідника зі струмом. У першу чергу варто знеструмити дріт. Якщо відключити його неможливо, треба терміново відокремити від нього потерпілого, використовуючи сухі ціпки, мотузки й інші засоби. Можна взяти потерпілого за одяг, якщо він сухий і відстає від тіла, не торкаючись при цьому до металевих предметів і частин тіла, не покритих одягом. При наданні допомоги треба ізолювати себе від “землі”, уставши на непровідну струм підставку (суху дошку, сухе гумове взуття і т.п.), і обернути руки сухою тканиною. Потерпілому забезпечити спокій і спостереження за пульсом і диханням.

З тих пір, як була встановлена при електротравмі клінічна смерть, необхідно при відсутності пульсу і дихання здійснювати реанімаційні заходи – штучну вентиляцію легенів і непрямий чи закритий масаж серця. Ці заходи необхідно проводити до відновлення роботи серця і самостійного дихання, до надання кваліфікованої медичної допомоги, чи до появи трупних плям (тобто безпосередніх ознак біологічної смерті). При наявності змін тканини у місці впливу електричного струму, накладають суху асептичну пов'язку на уражену частину тулуба. Щоб уникнути поразки електричним струмом, необхідно всі роботи з електричним устаткуванням і приладами проводити після відключення їх від електричної мережі.

Питання для контролю засвоєння навчального матеріалу.

1. Фізично небезпечні фактори.

2. Механічні коливання та їх вплив на людину.

3. Шум. Дія шуму на організм людини.

4. Інфразвук як негативний фактор.

5. Ультразвук. Дія ультразвуку на організм людини.

6. Електричні поля як негативний фактор техногенного походження.

7. Електромагнітні випромінювання оптичного діапазону. Їхня негативна дія на людину.

8. Електричний струм як негативний фактор побутового середовища.

2.4. Іонізуючі випромінювання

Назва “іонізуючі випромінювання” поєднує різні за своєю фізичною природою потоки енергії. Подібність між ними в тім, що всі ці випромінювання мають велику енергію, близьку за своїм характером хімічної дії на речовину, а також на живі організми.

Усі види іонізуючих випромінювань можна розділити на дві групи: електромагнітні випромінювання, до яких відносяться рентгенівські і гамма-промені, і потоки різного роду ядерних частинок.

Рентгенівські і гамма-промені належать до широкого спектру електромагнітних хвиль (рис. 2.2) і займають у ньому крайнє місце слідом за радіохвилями, інфрачервоними променями, видимим світлом і ультрафіолетовим випромінюванням. Усі ці види випромінювань розрізняються між собою по довжині хвилі. Найбільш коротку довжину хвилі і найбільшу частоту електромагнітних коливань у цьому спектрі мають рентгенівські і гамма-промені. Так, довжина хвилі рентгенівських променів, що випромінюється діагностичним рентгенівським апаратом, у 10 тис. разів коротша, а гамма-променів, що випромінюються радіоактивним кобальтом (60Со), майже у 450 тис. разів коротша довжини хвилі променів фіолетового світла.

Чим коротша довжина хвилі і, отже, чим більша частота коливань, тим вища енергія випромінювань і більша їхня проникаюча здатність.

У ядерній фізиці енергію прийнято вимірювати в електрон-вольтах (еВ) і в

Довжина хвиль, см Тип випромінювання Частота, Гц
100 000 000 000     Електричні хвилі 10-1
10 000 000 000 100
1 000 000 000 101
100 000 000 102
10 000 000 103
1 000 000 104
100 000 105
10 000 106
1 000     Радіохвилі 107
  108
  109
1,0 1010
0,1 1011
0,01 1012
0,001 Інфрачервоні промені 1013
0,000 1 1014
0,000 01 Промені, що ми бачимо 1015
0,000 001 Ультрафіолетові промені 1016
0,000 000 1 1017
0,000 000 01 Рентгенівське випромінювання 1018
0,000 000 001 Гамма випромінювання 1019

Рис. 2.2. Типи випромінювання та їхні довжина хвиль і частота.

похідних від цієї одиниці тисячах електрон-вольт (кеВ) і мільйонах електрон-вольтів (МеВ). Один електрон-вольт – це енергія, яку здобуває електрон при проходженні між пластинами конденсатора з різницею потенціалів у 1 В. Виходячи з деяких фізичних явищ, вважають, що рентгенівські і гамма-промені нагадують згустки енергій, які називають фотонами. Енергія фотона променів фіолетового світла, виражена в електрон-вольтах, дорівнює 3 еВ, рентгенівських променів для діагностики – 30 000 еВ, гамма-кванта 60Со – 1 160 000 і 1 330 000 еВ. Зі зменшенням довжини хвилі енергія квантів зростає. Математично ця залежність виражається так:

де – довжина хвилі в ангстремах (1 ангстрем (А0) = 1·10-8 см).

Незалежно від енергії фотони рентгенівських променів і гамма-квантів поширюється у вакуумі зі швидкістю світла 299 790 км/с.

Звичайним джерелом рентгенівського випромінювання є трубка рентгенівського апарату. У ній електрони, що випускаються при розігріві катода, прискорюються в електричному полі, створюваному прикладеною до анода високою напругою.

Підлітаючи до атомів матеріалу анода, електрони гальмуються, їхня кінетична енергія перетворюється в енергію фотонів рентгенівських променів. Максимальна енергія таких фотонів не перевищує прикладеної до анода напруги, але може мати будь-яке значення нижче її.

Середня енергія фотонів рентгенівських променів складає від половини до третини величини анодної напруги. Фотони рентгенівських випромінювань дуже високої енергії одержують за допомогою бетатрона − приладу для прискорення електронів. Тут при гальмуванні розігнаних до великої швидкості електронів виникають фотони, енергія яких може досягати мільйонів електрон-вольт. Сонце теж є джерелом рентгенівських променів, але, на щастя, ці промені поглинаються земною атмосферою і виявляються тільки приладами, встановленими на супутниках і космічних ракетах.

Гамма-кванти утворюються в ході ядерних реакцій і при розпаді багатьох радіоактивних речовин. Їхня енергія може мати значення від десятків тисяч до мільйонів електрон-вольт. Для розпаду кожної радіоактивної речовини характерна властива їй енергія гамма-квантів, що випромінюються.

Фізичні властивості рентгенівських і гамма-променів і, що дуже важливо, їхня біологічна дія на живі організми однакові.

Як було згадано раніше, до іонізуючих відносяться також випромінювання різного роду ядерних частинок. До числа легких ядерних частинок належать бета-частинки.

Бета-частинки по своїй фізичній природі не відрізняються від електронів, що знаходяться на оболонках атомів та їх античастинок – позитронів. Маса бета-частинок, як і електронів у спокої складає 1/1 840 маси ядра водню. Бета-частинки подібно електронам і позитронам мають елементарний негативний або позитивний заряди. Вони виникають у ядрах атомів в процесі радіоактивного розпаду і негайно ж випромінюються відтіля. Наприклад, так розпадається радіоактивний фосфор, перетворюючись у сірку. Цю реакцію можна записати в такий спосіб:

(число ліворуч знизу – атомний чи порядковий номер у таблиці періодичної системи елементів Д. І. Менделєєва, число ліворуч зверху – масове число, тобто атомна маса, виражені в цілих числах). Бета-частинки, що вилітають з ядер атомів, мають різну швидкість. Однак максимальна швидкість бета-частинок для конкретного виду радіоактивних атомів – величина цілком визначена. Наприклад, для радіоактивного фосфору () вона не набагато менша швидкості світла. Енергія над швидких бета-частинок дорівнює 1,7 МеВ. Середня енергія бета-частинок дорівнює однієї третини цієї величини. В результаті вильоту з ядра бета-частинки, що несе елементарний негативний заряд, вихідний радіоактивний атом перетворюється в атом іншого елемента, що стоїть в періодичній системі елементів праворуч (зрушення праворуч). Виліт позитрона супроводжується зрушенням ліворуч, тобто перетворенням в атом елемента, що має на одиницю менший атомний номер, ніж у вихідного.радіоактивного атома.

Бета-частинки (електрони, позитрони), на відміну від електромагнітних випромінювань (рентгенівських і гамма-променів), відхиляються від свого шляху в електричному і магнітному полях.

До важких ядерних часток відносяться альфа-частинки.

Альфа-частинка в 7 300 разів важкіша за бета-частинку. По своїй фізичній природі альфа-частинки є ядрами атома гелію з атомною масою 4,003 (). Альфа-частинка несе два елементарних позитивних електричних заряди. Ці частинки випромінюються при радіоактивному розпаді деяких елементів. Таким шляхом розпадається, наприклад, радій

.

Швидкість альфа-частинок, що випромінюються радієм, дорівнює приблизно 17 000 км/с. У результаті вильоту альфа-частинки атомний номер зменшується на дві одиниці, а атомна маса на чотири одиниці.

Альфа-частинки складають близько 6% загального числа частинок у космічних променях біля землі.

Відомо близько 30 різних природних радіоактивних речовин, при розпаді яких вилітають альфа-частинки. Зараз штучно отриманий ряд нових альфа-випромінювачів, що не зустрічаються в природі. Це так називані трансуранові елементи з атомним номером більше 92 (93…109).

Протони і дейтрони – це ядра легкого і важкого водню з одним елементарним позитивним зарядом. Маса протона майже в чотири рази, а дейтрона в два рази менша маси альфа-частинки. При деяких ядерних реакціях протони випромінюються з атомних ядер. Протони, які мають колосальну енергією, приходять на Землю зі світового простору в складі космічних променів. Вони переважають над іншими частинками у внутрішньому радіаційному поясі Землі (600…1 000 км і вище й у місцях магнітних аномалій нижче 600 км).

В результаті ядерних реакцій при поглинанні енергії протонів в атмосфері виникає радіоактивний вуглець ().

До іонізуючого випромінюванням потрібно віднести і нейтральні, не несучі електричного заряду частинки – нейтрони. Ці частинки вилітають з ядер атомів при деяких ядерних реакціях, зокрема при реакціях ділення ядер урану та плутонію. Маса нейтрона майже дорівнює масі протона. Нейтрони характеризуються різною швидкістю. Швидкі нейтрони мають енергію порядку 1 МеВ і вище, повільні – від одиниць до декількох електрон-вольт. Розрізняють також нейтрони проміжної енергії.

Ядра елементів більш важких, ніж водень і гелій, розігнані до великих швидкостей, також варто віднести до іонізуючого випромінювання. Дія важких іонів на живі організми вивчено ще мало, але майбутнім космонавтам прийдеться вважатися з тим, що такі частинки є поза земною атмосферою в складі первинного космічного випромінювання. Ядра більш важких, ніж гелій, елементів складають у Землі близько 1% усього числа частинок у космічних променях, що мають галактичне походження.

Ефект іонізації. Швидко рухаючись ядерні частинки, поширюючись у будь-якому середовищі, будуть зіштовхуватися (взаємодіяти) з молекулами й атомами речовини, розтрачуючи при цьому свою енергію.

Механізм поглинання енергії різних за своїй фізичній природі випромінювань (рентгенівських і гамма-квантів, заряджених частинок, нейтронів) неоднаковий, але в кінцевому рахунку він зводиться до виникнення іонів і збуджених атомів і молекул. Ефект іонізації, властивий усім цим випромінюванням, дозволяє віднести їх до однієї категорії – іонізуючих промінів.

Ефект іонізації полягає в тім, що заряджена частинка електрично взаємодіє з електроном на зовнішній оболонці атома чи молекули речовини, через яку вона пролітає. Це приводить до розриву зв'язку цього електрона з відповідним атомом або молекулою, в наслідок чого атом або молекула стає позитивно зарядженим іоном. Позитивний іон разом з електроном, що відірвався, утворює пару іонів. Електрон, зірваний з оболонки атома при первинному зіткненні з іонізуючою частинкою, може у свою чергу іонізувати молекули й атоми середовища, що зустрічаються на його шляху, поки не вичерпає свою кінетичну енергію і не приєднається до нейтральної молекули з утворенням негативного іона. На утворення пари іонів витрачається тільки частина енергії іонізуючої частинки. Повна ж передача її енергії супроводжується утворенням у поглинаючому середовищі багатьох пар іонів. На кожну пару іонів виникає, крім того, два-три збуджених атома чи молекули. Перескок електрона з ближньої до ядра атома оболонки на більш далеку (на що також витрачається енергія) «збуджує» атом. При зворотному перескоку електрона на ближню оболонку надлишок енергії випромінюється у виді фотонів видимого, ультрафіолетового світла чи рентгенівських променів. Спалахи світла, які виникають у деяких речовинах (сцинтиляторах), при поглинанні випромінювання можуть бути зареєстровані за допомогою фото примножувача й електронного пристрою. Це один зі способів виявлення і виміру параметрів іонізуючих випромінювань.

Може виникнути питання, як же іонізують поглинаюче середовище нейтрони, якщо вони не заряджені і не можуть, електрично взаємодіяти з електронами молекул та атомів? Нейтрон дійсно не є безпосередньо іонізуючою часткою. Механізм поглинання нейтронів у тканинах живих організмів насамперед залежить від їх енергії. Для швидких нейтронів з енергією 1 МеВ і вище найбільш важливою реакцією є розсіювання на ядрах водню. Відштовхуючись від ядра водню, тобто протона, нейтрон передає останньому частину своєї кінетичної енергії. Такий протон, чи, як його звичайно називають, протон віддачі, і буде безпосередньо іонізуючою частинкою. Кожне зіткнення нейтрона з ядром водню приводить до зниження енергії нейтрона. Після декількох зіткнень нейтрон перейде в категорію повільних та теплових нейтронів. У тканинах поряд із протонами віддачі можуть виникати ядра віддачі вуглецю, кисню, азоту та ін. Однак імовірність виникнення ядер віддачі більш важких атомів, ніж водень, порівняно невелика. Головною реакцією при поглинанні теплових нейтронів є реакція радіаційного захоплення. Так називають реакцію, при якій відбувається захоплення нейтрона з випущенням гамма-кванта. Прикладом такої реакції може бути захоплення нейтрона ядром легкого водню з утворенням важкого водню:

.

Важкий водень – дейтерій – стійкий. Атоми дейтерію не піддані радіоактивному розпаду. Але поглинання повільних нейтронів приводить також до виникнення радіоактивних атомів. Прикладом можуть служити наступні дві ядерні реакції, що поряд з іншими протікають в організмі при опроміненні нейтронами:

У цих реакціях (як і при реакції з воднем) в момент захоплення нейтрона виникає гамма-квант. Іонізацію в середовищі викликають процеси поглинання цього гамма-кванту. Крім того, іонізацію викликають також випромінювання, що генеруються радіоактивними атомами, які утворилися, при їхньому розпаді.

В залежності від енергії гамма-квантів і елементного складу поглинаючого середовища по-різному буде відбуватися їхня взаємодія з атомами чи молекулами. Гамма-квант при взаємодії із середовищем може віддати усю свою енергію електрону, що вибивається з атома, і перестати існувати (фотоефект), або електрон здобуває тільки частину енергії гамма-кванта (ефект Комптона). В останньому випадку електрон вилітає з атома в одному напрямку, гамма-квант зі зменшеною в порівнянні з первісною енергією – в іншому. Електрон розтрачує свою кінетичну енергію на іонізацію і збудження інших атомів і молекул поглинаючого середовища, гамма-квант продовжує взаємодіяти із середовищем доти, поки не зникне в результаті фотоефекта.

При енергії гамма-кванта 1,02 МеВ і вище можливий ще третій вид взаємодії із атомами речовини, де вони розповсюджуються, – утворення пари електрон - позитрон. Ці частинки з'єднуються один з одним (або позитрон вступає у реакцію анігіляції з електроном іншого атома) і породжують два гамма-кванти з енергією 0,51 МеВ кожний.

Хоча вторинний електрон, що виникає при повному чи частковому поглинанні гамма-квантів, іонізує середовище точно так само, як бета-частинка відповідної енергії, розподіл йонів в об’ємі, що опромінюється, буде далеко не однаковий. При зовнішнім опроміненні бета-частинка з енергією 1 МеВ проникає в тканину на глибину лише декількох міліметрів. Більш глибокі шари тканини залишаються незачепленими таким випромінюванням. Гамма-квант тієї ж енергії буде проникати глибоко в тканину, поступово утрачаючи свою енергію на вибивання електронів, а електрони на іонізацію і руйнування молекул.

Таким чином, якщо навіть в об’ємі тканини, що опромінюється, у результаті дії різних видів випромінювань утвориться однакове число іонів, просторовий їхній розподіл буде різним. Альфа-частинки і протони дадуть щільні рої іонів. Бета-частинки високої енергії спочатку дають у тканини досить розосереджені по сліду пари іонів; наприкінці свого шляху вони так само як і альфа-частинки, утворюють пари іонів, що збиваються в тісний ряд. Гамма-кванти утворюють пари іонів рівномірно розподілені по всьому обсязі тканини, що опромінюється.

Швидкі нейтрони в силу їхнього великого пробігу в тканині вибивають протони з атомів на різній глибині. Іони, збуджені молекули та атоми, що утворюються при поглинанні енергії протонів, подібно тому, як це відбувається при взаємодії з гамма-квантами, розподілені у всьому об’ємі, що опромінюється. Різниця в тім, що протони – важкі частинки, тому вони мають короткий пробіг у тканині і дають щільну іонізацію, тоді як вторинні електрони при рівній енергії пробігають більший шлях у тканинах і дають меншу щільність іонів.

Чи буде людина, приймаючи сонячні ванни, радуватися красивій засмазі, або буде страждати від опіків, залежить від дози променевої енергії, поглиненої шкірою. Точно так само біологічна дія іонізуючих випромінювань пов'язана з кількістю енергії, поглиненою тканиною. Цю енергію, як згадувалося раніше, вимірюють у електрон-вольтах. Разом з тим зручніше скористатися іншою одиницею – ергом. Один електрон-вольт еквівалентний – 1,6·10-12 ерг. Ерг – одиниця роботи. Це сила в одну діну (1 дін), що діє на шляху 1 см. Ерг – мала величина. Для нагрівання одного граму води на 1°С потрібно виконати роботу у 4,2·106 ерг, що еквівалентно однієї малої калорії (1 кал).

Одиниця поглиненої дози будь-якого виду іонізуючого випромінювання зветься рад. Доза, що дорівнює 1 рад, означає, що кожен грам речовини, при опроміненні, поглинає 100 ерг енергії. Безпосередньо визначити кількість поглиненої енергії, а отже і поглинену дозу, можна в тому випадку, якщо поглинаюче середовище в кінцевому рахунку хімічно не змінюється; тоді вся енергія іонізуючого випромінювання перетворюється в тепло. Цей ефект вимірюють у калориметрі – приладі, у якому можна визначити кількість тепла, що виділилося. Але зробити це дуже важко, тому що навіть великі дози іонізуючого випромінювання, перетворені в тепло, дають дуже невеликий підйом температури.





Дата публикования: 2015-10-09; Прочитано: 592 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...