Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Современные тенденции развития архитектуры ЭВМ. Перспективы совершенствования архитектуры ВМ и ВС



Можно выделить общие тенденции развития компьютеров:

1. Увеличение количества элементов на единицу площади.

2. Уменьшение размеров.

3. Увеличение скорости работы.

4. Снижение стоимости.

5. Развитие программных средств, с одной стороны, и упрощение, стандартизация аппаратных – с другой.

Теперь попробуем посмотреть по какому пути пойдет развитие архитектуры ЭВМ в ближайшем будущем.

· Суперскалярная архитектура

Суперскалярные процессоры конца 90-х годов могли исполнять до 4-6 инструкций за один машинный цикл. На практике они выполняют в среднем 1,5 инструкции за такт. "Продвинутые" суперскалярные процессоры (Advanced superscalar) смогут выполнять от 16 до 32 инструкций за такт. Чем это обернется на практике, пока сказать трудно, но и для "суперскалярной" архитектуры существенным ограничением является поток обрабатываемых данных.

В общем виде "продвинутая" суперскалярная архитектура состоит из 24-48 высокооптимизированных конвейерных блоков(например, блоков, выполняющих операции с плавающей точкой или обрабатывающих целые числа). Как и в простых суперскалярных архитектурах, каждый блок получает свою собственную "резервацию" - временное место хранения, где накапливается очередь инструкций, выполняемых данным блоком.

Для сокращения доступа к памяти предполагается использовать наряду с обычным кешем так называемый "трассирующий" кеш, который объединяет логически смежные блоки в физически смежные хранилища.

Более совершенное предсказание ветвлений - еще одна задача ближайшего будущего, и она тесно связана с предсказанием адресации: процессор попытается предсказать адреса ячеек памяти, которые будут затребованы последующими инструкциями, и вызвать их содержимое заранее. Для того чтобы чнизить эффет задержки сигналов в соединениях, предполагается сгруппировать их в кластеры.

· Суперспекулятивная архитектура

Эта архитектура подразумевает предсказание как ветвлений, так и данных. Это означает, что предсказываются адреса ячеек памяти и хранящиеся в них величины. Один из способов достичь этого - пошаговое предсказание: обнаружив постоянное приращение в величинах данных и адресах памяти(шаги), можно "догадаться" о будущих величинах, используемых вычислениях(такое может происходить в циклах или матрицах).

Основное преимущество таких архитектур в том, что они не требуют изменений в компиляторах, да и программный код должен выполняться быстрее. Они должны выполнять по 10 инструкций за один машинный такт. С другой стороны, дизайн процессора в этом случае более сложный, и то, что он не делится на блоки, может вызвать проблемы с задержкой сигналов.

· Трассирующая архитектура

В обычных архитектурах иснтрукция представляет собой исполняемую единицу. В трассирующих процессорах исполняемая единица - "трасса" - последовательность инструкций. Каждый маршрут передается своему суперскалярному процессорному элементу, апоминающему суперскалярный микропроцессор и имеющему собственный набор локальных и глобальных регистров, что обеспечивает как внутримаршрутный, так и межмаршрутный параллелизм.

Применение трассирующих процессоров способствует решению проблемы задержек сигналов в межсоединениях, однако требует соответствующего кеша, что увеличивает его архитектурную сложность. Более того, это никак не решает проблему увеличения скорости обращения к памяти.

· IRAM

Буква 'I' здесь означает 'intelligent'. Возможно, это один из наиболее радикальных шагов в области архитектуры, направленный на ускорение доступа к памяти и снижения энергопотребления. Согласно IRAM большая яасть RAM перемещается непосредственно на чип, исключая необходимость в кеше. Низкое энергопотребление означает, что данная архитектурабольше всего подходит для мобильных компьютеров. Однако тот факт, что максимальное количество памяти, которое можно перенести на чип, составляет всего 96 Мбайт, лишает эту архитектуру надежд на широкое использование.

· Многопотоковый процессор

Данные процессоры по архитектуре напоминают трассирующие: весь чип делится на процессорные элементы, напоминающие суперскалярный микропроцессор. В отличие от трассирующего процессора, здесь каждый элемент обрабатывает инструкции различных потоков в течение одного такта, чем достигается параллелизм на уровне потоков. Разумеется, каждый поток иметт свой программный счетчик и набор регистров.

· Многоядерная архитектура

Эта архитектура подразумевает интегрирование нескольких простых микропроцессорных ядер на одном чипе. Каждое ядро выполняет свой поток инструкций. Каждое микропроцессорное ядро значительно проще, чем ядро многопотокового процессора, что упрощает проектирование и тестирование чипа. Но между тем усугубляется проблема доступа к памяти, необходима замена компиляторов.

· "Плиточная" архитектура

Сторонники считают, что ПО должно компилироваться прямо в "железе", так как это даст максимальный параллелизм. Такой подход требует достаточно сложных компиляторов, которые пока еще не созданы.

Процессор в данном случае состоит из множества "плиток"(tiles), каждая из которых имеет собственное ОЗУ и связана с другими "плитками" в своеобразную решетку, узлы которой можно включать и отключать. Очередность выполнения инструкций задается ПО.

· Многоетажная архитектура

Здесь речь идет не о логической, а о физической структуре. Идея состоит в том, что чипы должны содержать вертикальные "штабеля" микроцепей, изготовленных по технологии тонкопленочных транзисторов, заимствованной из производства TFT-дисплеев. При этом относительно длинные горизонтальные межсоединения превращаются в короткие вертикальные, что снижает задержку сигнала и увеличивает производительность процессора. Идея "трехмерных" чипов уже реализована в виде работающих образцов восьмиэтажных микросхем памяти. Вполе возможно, что она приемлима и для микропроцессоров, и в недалеком будущем все микрочипы будут наращиваться не только горизонтально, но и вертикально.

Теперь рассмотрим архитектуры, которые основаны не на креимневых технологиях и которые могут прийти к нему на смену:

· Оптическая(фотонная) архитектура

Оптические технологии давно уже используются в компьютеростроении. Например, это различные оптические накопители информации, в системах коммуникации ипользуются световые импульсы для передачи потоков информации. Идея использования света для обработки информации стала осуществимой лишь недавно. Главной преградой для оптических(фотонных) вычислений долгое время была невозможность обрабатывать световую информацию без использования промежуточных электронных компонентов между вводом и выводом. Открытие интерференции, основанной на оптической логике, решило эту проблему.

Оптическая логика основана на простом факте: когда встречаются два когерентных(с постоянным фазовым сдвигом) световых импульса одинаковой интенсивности, они образуют конструктивную интерференцию (интенсивность света удваивается) при совпадении фаз и деструктивную(уничтожают друг друга) при фазовом сдвиге 180 градусов. Когда два импульса взаимодействуют в одном канале, на интерференцию накладывается дифракция: за щелевой преградой образуются участки как конструктивной, так и деструктивной интерференции. Таким образом, помещая детектор выходного сигнала в соответствующих точках, можно получать нужные логические операции с изначальной парой световых импульсов.

Главное преимущество оптической логики перед креимневой в том, что фотоны распространяются гораздо быстрее электронов. Более того, в оптической логике данные поддаются конвейеризации. Оптическим компонентам не нужно формировать выходной сигнал до того, как они воспримут новый выходной сигнал, а значит, они могут обрабатывать целый поток данных.

Оптическая логика имеет также и ряд недостатков, особенно если говорить о последовательном соединении оптических затворов для построения компьютера. При построении сложного компьютера простая оптическая модель переходит в область голографии, и для построения логики тербуются разного рода световые шины. Еще более сложная проблема вытекает из того факта, что световые импульсы, которые образует оптичекая логика, могут иметь удвоенную интенсивность или иметь один из двух возможных файловых сдвигов в зависимости от того, какой из двух вхлдных сигналов включен. Это означает, что фазу и интенсивность импульсов необходимо контролировать по всей системе посредством оптичеких усилителей. Если эти проблемы будут решены, практичекая реализация оптических микропроцессоров на подложке из стекла или пластика станет вполне возможной.

· Квантовая архитектура

В основе квантовых вычислений лежит атом - мельчайшая единица вещества. Квантовые вычисления принципиально отличаются от традиционных, так как на атомном уровне в силу вступают законы квантовой физики. Один из них - закон суперпозиции: квант может находиться в двух состояниях одновременно. Обычно бит может иметь значение либо 1, либо 0, а квантовы бит(qubit) может быть еденицей и нулем одновременно.

Атом - "удобное" хранилище информационных битов: его электроны могут занимать лишь ограниченное число дискретных энергетических уровней. Так, атом высокого энергетического уровня мог бы служить логической единицей, а низкого - логическим нулем. Очевидным недостатком здесь является нестабильность атома, поскольку он легко меняет энергетический уровень в зависимости от внешних условий.

Поскольку управлять энергетическим уровнем одного атома нереально, предполагается использовать длинные молекулы (цепи из миллиардов атомов) таким образом, чтобы величину их содержимого можно было менять путем бомбардировки первого атома в цепи лазерным лучем. Длинные молекулы тоже весьма нестабильны, и их надо хранить при сверхнизкой температуре. Да и сбор данных требует весьма сложного оборудования, так что до массового производства подобных систем еще далеко.

· Нейроархитектура

Для решения некоторых задач требуется создание эффективной системы искусственного интеллекта, которая могла бы обрабатывать информацию, не затрачивая много вычислительных ресурсов. Мозг и нервная система живых организмов позволяют решать задачи управления и эффективно обрабатывать сенсорную информацию, а это огромный плюс для создаваемых вычислительных систем. Именно это послужило предпосылкой создания искусственных вычислительных систем на базе нейронных систем живого мира.

Создание компьютера на основе неронных систем живого мира базируется на теории перцептронов, разработчиком которой был Розенблатт. Он предложил понятие перцептрона - искусственной нейронной сети, которая может обучаться распознаванием образов.

Перспективность создания компьютеров по теории Розенблатта состоит в том, что структуры, имеющие свойства мозга и нервной системы, имеют ряд особенностей, которые помогают при решении сложных задач:
1. Параллельность обработки информации.
2. Способность к обучению.
3. Способность к автоматической классификации.
4. Высокая надежность.
5. Ассоциативность.

Нейрокомпьютеры(биокомпьютер) - это совершенно новый тип вычислительной техники. Их можно строить на базе нейрочипов, которые функционально ориентированы на конкретный алгоритм, на решение конкретной задачи. Для решения задач разного типа требуется нейронная сеть разной топологии(топология - специальное расположение вершин, в данном случае нейрочипов и пути их соединения).





Дата публикования: 2015-09-17; Прочитано: 1354 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...