Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

V Пример. В суждении «Ни одно чётное число не является нечётным» предикатом считается имя «являющийся нечётным»



В суждении «Ни одно чётное число не является нечётным» предикатом считается имя «являющийся нечётным», т. е. имя «нечётный» берётся без учёта выраженного частицей «не» смысла (терминного отрицания). Если же этот смысл оказывается выявленным, учтённым в структуре высказывания, то в приведённом выше примере предикатом будет считаться имя «являющийся чётным», взятое с отрицанием. Обозначив терминное отрицание символом «-», получим запись: «Ни один S не есть -P» (формула: Se-P).

§4.5. Модельные схемы и распределённость (нераспределённость) терминов простых категорических высказываний

Однако, как в случае аристотелевской, так и в случае любых разновидностей традиционной силлогистики фундаментальным для понимания смысла простых категорических атрибутивных высказываний оказывается логическое отношение их терминов, т. е. выступающих в роли субъекта и предиката разных по объёму, соединённых предицирующими связками имён. Те отношения между терминами высказываний, которые в случае каждой формы отвечают условию истинности, получили название модельных схем. Модельные схемы фиксируют «объём сказывания» (мыслимое в высказывании положение дел). Объём сказывания наглядно выявляется посредством совмещения: 1) объёма «универсума» (что характерно для традиционной силлогистики), обозначаемого четырёхугольником c латинской «U», 2) объёма субъекта, (так называемая «круговая схема» или «круг Эйлера») с латинской «S» и 3) объёма предиката, обозначаемого вторым кругом Эйлера с латинской «P». Объём сказывания может быть нулевым, когда субъект и предикат суждения не имеют ни одного общего элемента, и ненулевым, который фиксируется на модельных схемах штриховкой, покрывающей общие у субъекта и предиката элементы. Для общеутвердительных (A) суждений существуют только 2-е модельные схемы (рис. 19):

Рис. 19

Первая схема фиксирует штриховкой объём сказывания при наличии между S и P отношения равнозначности (тождественности), т. е. когда эти два термина выражены полностью совпадающими по объёму (тождественными, равнозначными) именами.





Дата публикования: 2015-09-17; Прочитано: 246 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...