Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

1 страница. Вопросы Ответы 1. Свойства материалов по отношению и действию воды и мороза Влаго- или водоотдачей называют способность материала

Вопросы Ответы

  1. Свойства материалов по отношению и действию воды и мороза Влаго- или водоотдачей называют способность материала при изменении внешних условий отдавать в окружающую среду содержащуюся в нем влагу. Устойчивость строительных материалов по отношению к систематическому воздействию воды называют водостойкостью. Многие из строительных материалов, будучи насыщены водой, становятся менее прочными, чем в сухом состоянии, а некоторые из них полностью размокают, совершенно теряют свою прочность и разрушаются. В связи с этим водостойкость материалов принято характеризовать отношением величины предела прочности при сжатии образца в насыщенном водой состоянии к величине предела прочности при сжатии такого же образца в воздушно-сухом состоянии. Это отношение называют коэффициентом размягчения.Строительные материалы, у которых коэффициент размягчения меньше 0,8, нельзя применять в конструкциях, находящихся в сырых местах или воде. Водопроницаемость — свойство материала пропускать воду, которая, соприкасаясь с одной из поверхностей образца, проникает в него через капилляры и открытые поры и проходит к противоположной поверхности. Степень водопроницаемости бывает различной. Материалы, у которых открытые поры и капилляры отсутствуют, практически водонепроницаемы, например стекло, сталь, фарфор и др. Водопроницаемость характеризуется количеством воды, которая просачивается под определенным заданным давлением через единицу площади испытуемого материала за единицу времениВ = G/Ft,где В — водопроницаемость материала, г/см2-с (см3/см2-с); G — количество воды, просачивающееся через испытуемый материал; F — площадь, непосредственно подвергающаяся водопрониканию, см2; t — время просачивания воды через материал, с. Газопроницаемостью, а также и паропроницаемостью называют способность материала благодаря наличию открытых пор, капилляров, микрощелей и микротрещин пропускать водяные пары и различные газы. Морозостойкость — способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без видимых признаков разрушения и значительного снижения прочности. Замораживание испытуемых образцов производится при —15°С и ниже, оттаивание осуществляется в водной среде, температура которой поддерживается в пределах от +10 до +20°С.
2. Стеновые керамические материалы, виды, свойства, применение Керамические материалы получают из глиняных масс путем формования и последующего обжига. При этом часто имеет место промежуточная технологическая операция — сушка свеже-сформованных изделий, называемых «сырцом».По характеру строения черепка различают керамические материалы пористые (неспекшиеся) и плотные (спекшиеся). Пористые поглощают более 5% воды (по массе), в среднем их во-допоглощение составляет 8...20% по массе. Пористую структуру имеют кирпич, блоки, камни, черепица, дренажные трубы и др.; плотную — плитки для полов, канализационные трубы, санитарно-технические изделия. По назначению керамические материалы и изделия делят на следующие виды: стеновые — кирпич обыкновенный, кирпич и камни пустотелые и пористые, крупные блоки и панели из кирпича и камней; для перекрытия — пустотелые камни, балки и панели из пустотелых камней; для наружной облицовки — кирпич и камни керамические лицевые, ковровая керамика, плитки керамические фасадные; для внутренней облицовки и оборудования зданий — плиты и плитки для стен и полов, санитарно-техниче-ские изделия; кровельные—черепица; трубы — дренажные и канализационные. Универсальность свойств, широкий ассортимент, высокая прочность и долговечность керамических изделий позволяют широко использовать их в самых разнообразных конструкциях зданий и сооружений: для стен, тепловых агрегатов, в качестве облицовочного материала для полов и стен, в виде труб для сетей канализации, для облицовки аппаратов химической промышленности, в качестве легких пористых заполнителей для сборных железобетонных изделий.  
3. Гидравлические вяжущие, разновидности, свойства, области примененияК гидравлическим вяжущим веществам относятся: Гидравлическая известь - это вяжущее вещество, которое получают методом обжига не до спекания мергелистых известняков, в которых содержится от 6 до 25% глинистых и тонкодисперсных песчаных примесей. Согласно ГОСТу 9179-77 данный строительный материал производят в виде тонкоизмельченного порошка. Помимо глинистых примесей мергелистые известняки содержат включения углекислого магния и прочие примеси. Поскольку гидравлическую известь производят из природного сырья без переработки в искусственные смеси однородного состава, следовательно, для ее получения необходимо применять мергелистые известняки. Романцемент - тоже относится к гидравлическим вяжущим веществам. Этот продукт тонкого помола обожженный не до спекания чистых и доломитизированиых мергелей, содержащих до 25 % глинистых примесей. Для регулирования свойств данного вида цемента, возможно добавление в него до 5 % гипса различных модификаций и до 15 % активных минеральных добавок. В качестве сырья для изготовления романцемента используются мергели. Портланцемент, пожалуй, самый востребованный на сегодняшний день вид цемента. Данный строительный материал обладает высокими эксплуатационными характеристиками, что обуславливает его применение в возведении ответственных конструкций. Существует две марки этого цемента М400 и М500, цифра, идущая после буквы, как мы знаем, обозначает прочность цемента.Цемент. Наверное, не будет ошибкой, если мы назовем цемент самым необходимым гидравлическим вяжущим в строительном производстве. Каждый из видов гидравлических вяжущих веществ имеет свое предназначение и в целях безопасности и долговечности возводимых объектов, желательно использовать каждый вид по предназначению.
  1. Минералы группы сульфатовМинералы-сульфаты являются природными солями серной кислоты, есть среди них кислые, основные, средние соли и кристаллогидраты (табл. 43). Во всех этих ми­нералах в их кристаллической структуре имеются обособленные сложные анионы — тетраэдры (804)2- (см. рис. 207). Вообще сульфатов в природе мало, больше всего сульфатов железа, натрия, калия, алюминия, кальция, бария. Самыми распростра­ненными являются гипс, ангидрит, барит, алунит, тенардит, мирабилит. Почти все сульфаты — это экзогенные минералы, исключение составляют барит, алунит. Минералы группы барита узнаются по вы­сокой плотности, спайности. Друг от друга от­личаются по условиям их нахождения в при­роде.
2. Керамические материалы для наружной облицовкиОблицовочные керамические материалы применяют для наружной и внутренней отделки зданий различного назначения. При наружной отделке отделывают фасады зданий. Керамические изделия для облицовки фасадов подразделяют на кирпич и камни лицевые, мелкие плитки, крупногабаритные плиты, ковровую керамику и фасонные детали для устройства карнизов, сливов, поясков, сандриков, тяг и т.д. Фасадные керамические изделия укладывают одновременно с кладкой стен. Кирпич и камни керамические лицевые. Они отличаются точностью геометрических размеров и однородностью цвета. Для изготовления этих изделий применяют высококачественные глины. Плиты и плитки фасадные. Плиты фасадные керамические применяют так же, как и лицевые кирпичи и камни, для повышения долговечности наружных стен и придания им красивого внешнего вида. Изготовляют их способом пластического формования, реже методом полусухого прессования из глиняных масс. Фасадные малогабаритные плиты. Наряду с крупногабаритными облицовочными керамическими плитами выпускают легкие облицовочные цветные и глазурованные плитки размерами от 46 х 21 до 296 х 102 мм, толщиной 4... 10 мм. Их применяют в крупнопанельном домостроении для отделки наружных поверхностей стеновых панелей, а также для облицовки цоколей различного назначения. Плитки для облицовки цоколей имеют размеры 150 х 75 и 120 х 65 мм при толщине 7... 8 мм, водопоглощение не более 6 % и морозостойкость не менее 25 циклов. Ковровая керамика. Ковровая керамика представляет собой мелкоразмерные плитки различного цвета, глазурованные и неглазурованные. Применяют для облицовки крупных панелей и блоков в блочном и панельном домостроении, а также для облицовки стен вестибюлей и лестничных клеток зданий различного назначения.
3. Прочность, марка бетона. Факторы, влияющие на прочность бетона. Бето́н — искусственный каменный строительный материал, получаемый в результате формования и затвердевания рационально подобранной и уплотнённой смеси, состоящей из вяжущего вещества (цемент или др.), крупных и мелких заполнителей, воды. Марка или класс - это главный показатель качества бетонной смеси, на который обычно акцентируется внимание при покупке бетона.1.марки бетона в цифрах м 100, м 150, м 200, м 250, м 300, м 350, м 400, м 450, м 500 Полный диапазон марок от м 50 до м 1000. Основной диапазон применения 100-500. Марка бетона напрямую зависит от количества цемента в составе бетонной смеси. 2.класс бетона B 7.5, B 10, B 12.5, B 15, B 20, B 22.5, B 25, B 30, B 35, B 40 Полный диапазон классов от В 3.5 до B 80. Основной диапазонB7.5-B40. Цифры марки бетона (м-100, м-200 и т.д) обозначают (усреднённо) предел прочности на сжатие в кгс/кв.см. Проверку соответствия необходимым параметрам осуществляют сжатием (специальным прессом) кубиков или цилиндров, отлитых из пробы смеси, и выдержанных в течение 28 суток нормального твердения. Вода, используемая для изготовления бетона должна быть чистой, цемент сверхтонкого помола
  1. Свойства материалов по отношению и действию тепла. ТЕПЛОПРОВОДНОСТЬ - Теплопроводностью называют способность материала передавать через свою толщу тепловой поток, возникающий вследствие разности температур на поверхностях, ограничивающих материал. Теплоемкостью называют свойство материала поглощать при нагревании определенное количество тепла. Под Огнестойкостью понимают способность материалов выдерживать без разрушения действие высоких температур. Огнеупорностью называют свойство материала противостоять, не деформируясь, длительному воздействию высоких температур.
2. Гидрофобный и пластифицированный портландцементы, их сущность, свойства и применение Пластифицированный портландцемент получают при помоле клинкера с добавкой гидрофильно-пластифицирующих веществ (0,15...0,25 % массы цемента). В качестве такой добавки используют лигносульфонат технический (ЛСТ), который получают, как отход при сульфитной варке целлюлозы. ЛСТ состоит в основном из лигносульфонатов кальция. Адсорбируясь на поверхности зерен цемента, лигносульфонат кальция улучшает их смачивание водой. Образующиеся адсорбционно-гидратные слои воды обеспечивают гидродинамическую смазку зерен, уменьшая трение между ними, и одновременно препятствуют их слипанию в хлопья (флокулы), благодаря чему повышается пластичность цементного теста, а следовательно, и бетонной смеси и их устойчивость к расслоению. Другие свойства пластифицированного портландцемента (сроки схватывания, скорость твердения, прочность) примерно те же, что и у обычных портландцементов. Применение пластифицированного портландцемента дает возможность снизить трудоемкость укладки бетонной смеси, уменьшить расход цемента или (при том же расходе цемента и равной подвижности смеси) снизить водоцементное отношение и тем самым увеличить плотность, прочность, морозостойкость и водонепроницаемость бетона. Этот цемент широко используют в дорожном, аэродромном и гидротехническом строительстве. Гидрофобный портландцемент, предложенный М. И. Хигеровичем и Б. Г. Скрамтаевьш, получают, вводя при помоле клинкера 0,1,..0,3 % мылонафта, асидола, окисленного петролатума, синтетических жирных кислот, их кубовых остатков и других гидрофобизирующих поверхностно-активных добавок. Молекулы гидрофобизирующих веществ имеют асимметрично-полярное строение и состоят из полярной группы (например, СООН или COONa) и неполярной (углеводородного радикала). Эти молекулы в процессе помола адсорбируются на поверхности цементных зерен, ориентируясь полярной группой к поверхности цементного зерна, а углеводородным радикалом наружу, придавая цементу гидрофобные (водоотталкивающие) свойства. Поэтому гидрофобный цемент в отличие от обычного портландцемента при длительном хранении даже в очень влажных условиях не комкуется и сохраняет активность. Адсорбированные на поверхности цементных зерен весьма тонкие (практически в одну молекулу) гидрофобные пленки в процессе перемешивания смесей легко снимаются и не препятствуют нормальному течению процессов твердения цемента. Оставаясь в смеси, гндрофобизиру-ющие вещества адсорбируются на поверхности новообразований, оказывая смазывающее действие и уменьшая трение между частицами смеси, вследствие чего повышаются ее пластичность и однородность. В затвердевшем цементном камне эти вещества располагаются на поверхности пор и капилляров камня и способствуют уменьшению водопоглощения и капиллярного подсоса. Благодаря указанным свойствам бетоны и растворы на гидрофобном цементе имеют более высокую водо- и морозостойкость и водонепроницаемость, чем бетоны на обычном цементе. Гидрофобный цемент целесообразно использовать при изготовлении бетонов для гидротехнического, дорожного, аэродромного строительства, а также в случаях, когда цемент необходимо длительно хранить и перевозить на дальние расстояния.
1. 3. Сортамент пиломатериалов, его назначение Пиломатериалы в современном строительстве представлены продукцией, изготовленной из бревен, которая имеет стандартные размеры, форму и так далее. Производят этот вид продукции с помощью распила бревен, используя специальные станки и лесопильные рамы. Сортамент пиломатериалов довольно разнообразен. Пластины. Этот вид заготовок получают при осуществлении продольного распила бревна, делящего его на две одинаковые части, можно считать, что половинки. Получается, что пластины имеют только одну обработанную сторону. Их размер зависит от того, из какого бревна они делались. Используется для изготовления шпал, брусков, столярных деталей и досок.Четвертины. Этот вид пиломатериала производится в процессе продольного распила бревен, но уже на четыре части. Размер тоже зависит от габаритов бревна. Используется в столярной области, в основном, для изготовления деталей небольшого размера.Брусок. Этот пиломатериал имеет ширину, не превышающую два размера толщины, при этом толщина соответствует значению не выше 100 мм. Использование данных заготовок возможно в столярной области, например, для изготовления вагонки, в целях производства мебели, чистового пола и так далее.Брус. Такой пиломатериал представлен размерным рядом, в котором значения ширины и толщины превышают 100 мм. Форма пиломатериала – параллелепипед. С его помощью выполняют обустройство пола, крыши, потолка и т.п.Шпалы. их основное использование находит свое применение в железнодорожном строительстве.Размеры шпал обладают большой шириной, а также толщиной, а вот длина этих изделий не очень велика.Горбыль. Этот пиломатериал представляет собой часть бревна, боковую. Он представляет отходы, полученные в результате распила целого бревна на доски. Горбыль обладает одной плоской стороной, вторая носит округлый характер. Самым целесообразным направлением его использования считается возведение строений временного, а также хозяйственного назначения.
  1. Материалы из извержённых горных пород. Виды, общие свойства, применение Среди изверженных горных пород различают массивные и обломочные, образовавшиеся в результате разрушения массивных пород. Массивные глубинные горные породы (граниты, сиениты, диориты и габбро) образовались в результате медленного охлаждения магмы на большой глубине под значительным давлением и в результате этого полной кристаллизации ее. Все глубинные породы характеризуются высокой плотностью и ярко выраженной кристаллической (крупнокристаллической) структурой. Гранит — наиболее распространенная глубинная горная порода, состоящая в основном из кварца, полевого шпата и слюды. Иногда слюда заменена темноокрашенными (железисто-магнезиальными) минералами. Цвет гранита зависит от главной составной части — полевого шпата и наличия темных минералов. Он бывает серый, красный и пр. Зерна минералов имеют настолько прочную спайность, что излом чаще происходит не по плоскости спайности, а по зернам минералов. Плотность гранита в среднем 2600 кг/м3, предел прочности при сжатии 100...300 МПа при расширении 1/40 - 1/60 предела прочности при сжатии. Большая механическая прочность, стойкость против выветривания и морозостойкость обусловливают высокие строительные свойства гранита и изготовленных из него строительных материалов и изделий. Гранит применяют для изготовления облицовочных плит, лестничных ступеней, полов, бортовых камней, щебня и др. Гранит используют при строительстве гидротехнических сооружений и сооружений памятников. Сиенит состоит в основном из полевого шпата (ортоклаза) и какого-нибудь темноокрашенного минерала. Строение сиенита сходно с гранитом. Плотность 2400...2900 мг/ма, предел прочности при сжатии 150... 200 МПа. Сиениты мягче гранитов, лучше поддаются полировке, обладают большей вязкостью. Используют сиениты наряду с гранитами. Между гранитами и сиенитами имеются переходные разности — граносиениты. Диориты по минералогическому составу представлены плагиоклазом, роговой обманкой, реже — биотитом и авгитом. Цвет диорита от темно-зеленого до черно-зеленого. Плотность 2700...2900 кг/м3, предел прочности при сжатии 180...200 МПа, Диориты трудно обрабатываются, обладают большим сопротивлением истиранию, хорошо полируются, стойки против выветривания. Применяют диорит в дорожном строительстве и в виде облицовочных плит. Габбро — кристаллическая горная порода, состоящая в основном из плагиоклаза и темноокрашенных минералов (пироксены в виде авгита). Реже в состав габбро входят биотит и роговая обманка. Цвет габбро может быть от серого и зеленого до черного. К группе габбро относится также лабрадорит — горная порода, состоящая в основном из минерала Лабрадора (разновидности полевого шпата) серого, зеленовато-серого или темного цвета с синим отблеском на плоскостях спайности. Плотность габбро очень высокая и равна 2900...3160 кг/м3; предел прочности при сжатии 100...280 МПа, а иногда и до 350 МПа. Габбро стоек против выветривания, трудно обрабатывается, но дает хорошую долговечную полировку. Применяют его для гидротехнических и других видов сооружений в виде разнообразных строительных материалов — щебня, облицовочных плит и т. д. Лабрадорит, обладающий красивой расцветкой, используют как облицовочный материал. Излившиеся горные породы образовались при остывании магмы, излившейся на поверхность земной коры. Структура излившихся пород может быть полукристаллической, зернистой и стекловатой. Излившиеся породы имеют химический и минералогический составы такие же, как и глубинные, обладают примерно теми же физико-механическими свойствами, но отличаются мелкокристаллической (до стекловатой) структурой. Кварцевый порфир — аналог гранита — имеет стекловатую структуру с вкраплением крупных зерен кристаллов кварца. При выветривании эти зерна могут выпадать из основной массы горной породы. Плотность 2400...2600 кг/м3, предел прочности при сжатии 130...180 МПа. Используют его в виде щебня или штучного камня. Наряду с кварцевым порфиром существует бескварцевый порфир (аналог сиенитов), в котором кварц отсутствует. Трахит — горная порода, по химико-минералогическому составу сходная с порфиром, но образовавшаяся в более поздние геологические периоды. Трахит отличается высокой пористостью и относительно низким пределом прочности при сжатии — 60... 70 МПа. Диабаз — аналог габбро — состоит из плагиоклаза и авгита и имеет в своем составе примеси кварца и роговой обманки. Плотность 2800...3000 кг/м3, предел прочности при сжатии 200... 300 МПа, цвет темно-серый. Диабаз хорошо полируется. Применяют его в виде щебня, штучных камней, плит, брусчатки, в качестве облицовочного материала. Из расплавленного диабаза при температуре 1200... 1350 °С отливают различные изделия. Плавленый диабаз стоек к кислотам и щелочам, обладает высокими диэлектрическими свойствами. Прочность плавленого диабаза составляет около 500 МПа. Базальт по химическому и минералогическому составу является аналогом габбро. Имеет темный цвет, скрытокристаллическую структуру с некоторым количеством вулканического стекла и состоит из плагиоклаза и авгита. Плотность 2700... 3300 кг/м3, предел прочности при сжатии 100... 150 МПа. Высокая твердость и прочность базальтов позволяет использовать их в качестве материалов для дорожных покрытий. Применяют базальт как сырье для изготовления каменного литья. Порфирит и андезит — аналоги диорита. Порфирит — более старая, а андезит — более молодая горные породы; цвет их серый, серовато- и желтовато-зеленый. Плотность 2200... 2800 кг/м3, предел прочности при сжатии 60...240 МПа. Порфириты применяют в качестве облицовочного материала, щебня и дорожной брусчатки, а андезит (как кислотостойкий материал) — в качестве заполнителя в кислотоупорных бетонах, а также для специальных облицовок. Обломочные породы делят на рыхлые (пемза, вулканические пеплы и др.) и цементированные (вулканический туф). Пемза образовалась при быстром остывании магмы и интенсивном выделении из нее газов, вспучивающих массу. Последующее быстрое остывание вспученных кусков магмы приводит к образованию стекловидной пористой породы. Цвет пезмы серый, черный и иногда белый. Пемза состоит из кремнезема (до 70%) и глинозема (до 15%). Залегает пемза в виде обломков размеров 5...50 мм в диаметре, выброшенных во время извержения вулканов. Плотность пемзы в куске 400... 1400 кг/м3, пористость до 80 %, предел прочности при сжатии 0,4...2,0 МПа, твердость 6. Используют пемзу как щебень для легких бетонов, в качестве теплоизоляционного материала, а также как активную минеральную добавку к извести и цементам. Вулканический пепел встречается в виде порошка от серого до черного цвета. Применяют для получения легких растворов и бетонов, а также в качестве активной минеральной добавки к вяжущим веществам. Вулканические туфы — сцементированная туфовая лава, образованная при примешивании во время извержений к жидкой лаве пепла и песка. В результате быстрого охлаждения туфы имеют стекловидное строение. Типичным представителем вулканического туфа является артикский туф (по наименованию месторождения, расположенного близ г. Артик в Армении). Плотность туфа в куске 1250...1350 кг/м3, пористость 40...70%, предел прочности при сжатии 8... 19 МПа и выше, теплопроводность 0,21...0,33. Цвет розовато-фиолетовый. Применяют туф в качестве песка или щебня для легких бетонов и растворов, крупных стеновых блоков, а также активной добавки к воздушной извести или цементу. Высокие декоративные качества и морозостойкость позволяют широко применять туф в качестве облицовочного материала для фасадов зданий.
2. Магнезиальные вяжущие. Жидкое стекло. Принципы производства, свойства и применение: Каустический магнезит получают при умеренном обжиге магнезита при температуре 7ОО...8ОО°С. Он состоит в основном из оксида магния. Каустический доломит изготовляют обжигом природного доломита при 65О...75О°С, т. е. ниже температуры диссоциации углекислого кальция. Каустический доломит в основном состоит из оксида магния, являющегося активной частью вяжущего, и карбоната кальция, который, не обладая вяжущими свойствами, снижает его активность по сравнению с каустическим магнезитом. Магнезиальные вяжущие вещества характеризуются хорошим сцеплением с органическими материалами (древесными опилками, стружкой и т. п.) и предохраняют их от загнивания. На этом основано применение этих вяжущих для устройства ксилолитовых полов (заполнителем в которых служат древесные опилки), изготовления некоторых материалов (фибролита). Жидкое стекло (силикатный клей) – водный щелочной раствор различных силикатных солей. При изготовлении материала используются те же компоненты, что и для выпуска любой другой стекольной продукции – силикат калия или силикат натрия. Производят силикатный клей различными способами. Чаще – воздействием растворов названных компонентов на материал, содержащий кремнезем, при постоянной температуре. В другом варианте – сплавлением обычной соды с крупинками песка. Жидкое стекло применение в строительстве нашло благодаря своим физическим и химическим свойствам. Строительство бассейнов, канализационных колодцев, отделка ванных комнат и т. д. ведется с применением жидкого стекла для обеспечения гидроизоляции. Используется оно и для защиты подвальных помещений от грунтовых вод. Применение материала увеличивает срок эксплуатации конструкций в несколько раз. Основное свойство жидкого стекла, делающее его популярным, – эффективная клеящая способность. В структуре твердых материалов, подлежащих склеиванию, на поверхности молекулы связаны между собой не так прочно, как внутри. Внедряясь в структуру материала, жидкое стекло отдает ему влагу и увеличивает за счет адгезивности собственную плотность и вязкость. Также жидкое стекло в строительстве используется при возведении бетонных конструкций в качестве компонента бетонной смеси или пропитки для покрытия поверхностей. В его составе содержатся вещества, стимулирующие рост кристаллов, проникающих в различные пустоты. Таким образом создается препятствие разрушению водой и воздухом бетонных, металлических и прочих конструкций.
3. Теплоизоляционные материалы и изделия из органического сырья. Виды, свойства и примененК теплоизоляционным относятся материалы, применяемые в строительстве жилых и промышленных зданий, тепловых агрегатов и трубопроводов с целью уменьшения тепловых потерь в окружающую среду. Теплоизоляционные материалы характеризуются низкой теплопроводностью, высокой пористостью, незначительной плотностью и прочностью. Использование теплоизоляционных материалов позволяет уменьшить толщину и массу стен и других ограждающих конструкций, снизить расход основных конструктивных материалов, уменьшить транспортные расходы и, соответственно, снизить стоимость строительства. Наряду с этим при сокращении потерь тепла отапливаемыми зданиями уменьшается расход топлива на его обогрев. Многие теплоизоляционные материалы из-за высокой пористости обладают способностью поглощать звук, что позволяет использовать их также в качестве акустических материалов для борьбы с шумом. Теплоизоляционные материалы и изделия классифицируются по: виду основного исходного сырья (органическое, неорганическое); структуре (волокнистая, зернистая, ячеистая, сыпучая); содержанию связующего вещества (содержащие и не содержащие); возгораемости (несгораемые, трудносгораемые, сгораемые); по форме и внешнему виду. Среди большого разнообразия теплоизоляционных изделий из органического сырья наибольший интерес представляют плиты древесноволокнистые, камышитовые, фибролитовые, торфяные, пробковая теплоизоляция натуральная, а также теплоизоляционные пенопласты.
    1. Специальные свойства строительных материаловДля того чтобы правильно применять тот или другой материал в строительстве, нужно знать его физико-механические свойства и учитывать те условия, в которых он будет работать в строительной конструкции. Помимо основных свойств строительных материалов различают еще специальные свойства, присущие лишь отдельным видам строительных материалов. Химическая стойкость — способность материала противостоять разрушительному действию кислот, щелочей и солей. Химическая стойкость представляет собой свойства материалов оказывать сопротивление воздействию солей, газов, кислот и щелочей. Строительные материалы часто подвергаются разрушительному воздействию различных газов и жидкостей. К примеру, сточные воды содержат концентрированные щелочи и соли, которые оказывают разрушительное воздействие на структуру канализационных труб. Большинство строительных материалов не обладают необходимой химической стойкостью. Цемент, известняк, мрамор не смогут выдержать воздействие кислоты и разрушаются в краткие сроки. Битум не переносит воздействие концентрированных щелочей. Поэтому для сооружения канализации используют такие химически стойкие материалы как стекло, облицовочная плитка, плитка для пола. Коррозийная стойкость — свойство материала сопротивляться коррозийному действию окружающей среды. Бывает химической (при воздействии пресных вод) и электрохимической (при воздействии щелочей и солей). Акустическая изоляция — способность поглощать или отражать звук и вибрацию. Биологическая стойкость — способность материала сопротивляться влиянию процессов жизнедеятельности бактерий (пластмасса, камень). Предельное напряжения сдвига — это показатель внутреннего напряжения, который позволяет необратимо деформироваться и превратиться в вязкое вещество. В строительной индустрии эту величину назвали структурной прочностью. Процесс преобразование структуры на начальном этапе медленный, так как внутренние связи между частицами разрушаются постепенно. Чем дольше воздействие на вязкое тело, тем быстрее протекает преобразование. Еще одним свойством материала является тиксотропия — временная потеря вязкой структуры. Тиксотропии подвержены мастики, краски, бетонные и растворные смеси. При механическом воздействии связи внутри материала рушатся. Но если мы прекратим свои действия, то материал вернется в первоначальное состояние. Тиксотропия нашла применение в уплотнении бетонных смесей, нанесении мастичных и красочных смесей с помощью шпатели и кисти. Благодаря этому свойству возможно окрашивание различных поверхностей. Адгезийная стойкость — способность твердых и жидких материалов взаимодействовать друг с другом. Экологическая чистота — отсутствие вредного биологического воздействия на людей. Радиационная стойкость — способность противостоять ионизирующим лучам (особо тяжелый бетон). Вязкость — это трение, которое возникает между перемещающимися слоями жидкости по отношению друг к другу. Пластично-вязкие смеси имеют свойства, находящиеся на грани между твердыми и жидкими телами. К примеру, возьмем обычное тесто из воды и муки. Мы можем разрезать его ножом, как и другое твердое тело. С жидким телом такое проделать нельзя, но его можно налить в сосуд и оно примет его форму. Тесто, помещенное в сосуд, также заполнит все его пространство. Следовательно, вязкое тело ведет себя и как жидкое, и как твердое тело. В строительстве используют такие вязкие смеси, как краски, цементное и гипсовое тесто, строительные растворы.
2. Существо гидравличности вяжущих. Известь гидравлическая:Это вяжущие вещества, которые твердеют и длительно сохраняют свои свойства в воде. Они могут длительно эксплуатироваться в водной среде, потому что образуют гидратные соединения, которые устойчивы к водной среде. Примеры: романцемент, портландцемент и др. Гидравлическая известь — продукт умеренного обжига при температуре 900—1100° С мергелистых известняков, содержащих 6—20% глинистых примесей. При обжиге мергелистых известняков при разложении углекислого кальция часть образующейся СаО соединяется в твердом состоянии.с окислами SiCb, АЬО.з, Fe2O3, содержащимися в минералах глин, образуя силикаты 2СаО • БЮг, алюминаты СаО • А12О3 и ферриты кальция 2СаО • F-егОз, обладающие способностью твердеть не только на воздухе, но и в воде. Так как в гидравлической извести содержится в значительном количестве свободная окись кальция СаО, то она, так же как и воздушная известь, гасится при действии воды, причем чем больше содержание свободной СаО, тем меньше способность к гидравлическому твердению. Строительную гидравлическую известь выпускают в виде тонкоизмельченного порошка, при просеиваний которого остаток частиц на сите № 009 не должен превышать 10%. Кроме глинистых и песчаных примесей мергелистые известняки обычно содержат до 2—5% углекислого магния и некоторые другие примеси. Для производства гидравлической извести необходимо применять мергелистые известняки с возможно более равномерным распределением глинистых и других включений, так как от этого в значительной сте-.пени зависит качество получаемого продукта Для гидравлических известен этот модуль колеблется в пределах 1,7—9. Различают гидравлическую известь двух видов: слабогйдравличе-скую с модулем 4,5—9 и сйльногидравлическую с модулем 1,7—4,5. Если продукт обжига имеет гидравлический модуль менее 1,7, то его относят к-романцемёнту (т=1-,1—1,7), если же более 9, то к воздушной извести. Гидравлическая известь, затворенная водой, после предварительного твердения на воздухе продолжает твердеть и в воде, при этом физико-химические процессы воздушного твердения сочетаются с гидравлическими. Гидрат окиси кальция при испарении влаги постепенно кристаллизуется, а под действием углекислого газа подвергается -карбонизации.
3. Требования, предъявляемые к крупному заполнителю для бетоновЗаполнители занимают в бетоне до 80 % объема и оказывают влияние на свойства бетона, его долговечность и стоимость. Введение в бетон заполнителей позволяет резко сократить расход цемента, являющегося наиболее дорогим и дефицитным компонентом. Кроме того, заполнители улучшают технические свойства бетона. Бетоны, применяемые для изготовления конструкций в промышленном и гражданском строительстве, могут быть приготов­лены на портландцементе и шлакопортландцементе всех видов, имеющих марки не ниже 400. В качестве крупного заполнителя для бетона может быть ис­пользован щебень из естественного камня (ГОСТ 8267—64) и гравия (ГОСТ 10260—74), а также гравий (ГОСТ 8268—74). В зависимости от крупности заполнитель подразделяется на следующие фракции, мм: от 5 до 10; от 10 до 20; от 20 до 40 и от 40 до 70. Количество зерен пластинчатой и игловатой форм должны быть не более 15% (по весу). Различают следующие марки круп­ного заполнителя по прочности: 1200; 1000; 800; 600; 400; 300 и 200. Прочность определяется дробимостью (раздавливанием) при сжатии в цилиндре. По морозостойкости крупный заполнитель подразделяется на марки: 15; 25; 50; 100; 150; 200 и 300. Основные физико-механические испытания крупного заполни­теля должны проводиться в соответствии с ГОСТ 8269—64.
  1. Классификация породообразующих минералов:Различают главные и второстепенные породообразующие минералы. Один и тот же минерал для одной группы пород может быть главным, а для другой второстепенным. Большинство минералов кристаллического строения, встречаются минералы и некристаллического строения – аморфные, например, кремень. Классификация минералов основывается на учете их химического со-става. Наиболее распространенной является классификация, предложенная С.Д. Четвериковым, по которой минералы делятся на 10 классов.
Класс I силикаты Класс VI сульфаты
Класс II карбонаты Класс VII галоиды
Класс III окислы Класс VIII фосфаты
Класс IV гидроокислы Класс IX вольфраматы
Класс V сульфиды Класс X самородные элементы
2. Сульфатостойкий и быстротвердеющий портландцементы. Их сущность: Сульфатостойкий портландцемент (СПЦ)отличается от обычного портландцемента не только более высокой стойкостью к сульфатной коррозии, но и пониженной экзотермией при твердении и повышенной морозостойкостью. Клинкер для изготовления СПЦ должен содержать не более 50 % QS, не выше 5 % С3А и не более 22 % C3A+C4AF. Сульфатостойкий портландцемент выпускают М400. Его целесообразно применять в тех случаях, когда одновременно требуется высокая стойкость против воздействия сульфатных вод и попеременного замораживания и оттаивания, высыхания и увлажнения в пресной или слабоминерализованной воде. Быстротвердеющий портландцемент (БТЦ) отличается от обычного более интенсивным набором прочности в первые 3 сут. Разновидностью быстротвердеющего цемента является особо быстротвердеющий портландцемент (ОБТЦ), который характеризуется не только большой скоростью твердения в начальный период, но и высокой маркой (М600...700). Его изготовляют тонким измельчением клинкера, содержащего C3S 65...68% и СзА не более 8 %, совместно с добавкой гипса, до удельной поверхности 4000...4500 см2/г и более. Введение минеральных добавок не допускается. Разработан также сверхбыстротвердеющий цемент (СБТЦ) специального минерального состава, который обеспечивает интенсивное нарастание прочности уже в первые сутки его твердения (через 6 ч — 10 МПа). Интенсивность роста прочности бетона на быстротвердеющих цементах возрастает в условиях тепловлажностной обработки изделий при температуре 70...80°С. При этом через 4...6 ч удается получить изделия с прочностью, соответствующей 70...80 % 28-суточной. Быстротвердеющие портландцементы целесообразно применять при массовом производстве сборных железобетонных изделий, а также при зимних бетонных работах. Их применение дает возможность сократить расход цемента, длительность тепловлажностной обработки или даже отказаться от нее, тем самым увеличить оборот форм и сэкономить металл. Нельзя применять такие цементы для бетонов массивных конструкций и подвергающихся сульфоалюминатной коррозии.
3. Общие сведения о теплоизоляционных материалахСтроительные материалы для тепловой изоляции ограждающих конструкций зданий, промышленного и энергетического оборудования и трубопроводов называют теплоизоляционными. Такие материалы имеют низкую теплопроводность [не более 0,18 Вт/(м-°С)] и небольшую плотность (не выше 600 кг/м3). Применение теплоизоляционных материалов является одним из важнейших направлений технического прогресса в строительстве. При этом появляется возможность резко снизить массу конструкций и затраты на сооружение зданий, рационально использовать энергетические ресурсы. Применение в строительстве облегченных кирпичных стен с эффективными утеплителями взамен сплошной кирпичной кладки позволяет в 2...2,5 раза сократить потребность в кирпиче, цементе и извести, в 3 раза снизить массу конструкций, транспортные расходы и до 30 % снизить стоимость стен. Теплоизоляционные материалы позволяют создать легкие стеновые панели, конструкции легких покрытий. Это дает возможность повысить степень индустриализации строительных работ. Весьма эффективным является использование теплоизоляционных материалов для изоляции тепловых агрегатов, технологической аппаратуры и трубопроводов. Удельный вес теплоизоляционных работ в жилищно-гражданском строительстве составляет около 1 %, в промышленном строительстве он возрастает до 1,8 %, в том числе в строительстве электростанций и нефтехимических объектов — до 2,5...3 %. Применение теплоизоляционных материалов в этом случае позволяет снизить расход топлива за счет уменьшения теплопотерь, а в ряде случаев интенсифицировать технологические процессы, улучшить условия и повысить производительность труда. Очень важно использование теплоизоляционных материалов в различных холодильных установках для снижения потерь холода, так как стоимость получения единицы холода примерно в 20 раз выше стоимости получения соответствующей единицы теплоты.
    1. Минералы группы алюмосиликатовМинералы группы алюмосиликатов — полевые шпаты, слюды, каолиниты. Полевые шпаты составляют 58% всей литосферы и являются самыми распространенными минералами. Разновидностями их являются ортоклаз и плагиоклазы. Ортоклаз - калиевый полевой шпат - K2О x Al2О3 x 6SiО2. Имеет среднюю плотность 2,57 г/см3, твердость - 6-6,5. Является основной частью гранитов, сиенитов. Плагиоклазы - минералы, состоящие из смеси твердых растворов альбита и анортита. Альбит - натриевый полевой шпат - Na2О x Al2О3 x 6SiО2. Имеет плотность 2,6 г/см3, твердость - 6-6,5. Анортит - кальциевый полевой шпат – CaO x Al2О3 x 2SiО2. Его плотность - 2,75 г/см3, твердость - 6-6,5. Плагиоклазы входят в состав кислых и основных горных пород. Предел прочности полевых шпатов при сжатии составляет 120-170 МПа, что ниже прочности кварца. Они выветриваются под воздействием воды, содержащей углекислоту, в результате чего образуется каолинит. Слюды - водные алюмосиликаты слоистого строения, способные расщепляться на тонкие пластинки. Наиболее часто встречаются два вида - мусковит и биотит. Мусковит - калиевая бесцветная слюда. Обладает высокой химической стойкостью, тугоплавка. Биотит - железисто-магнезиальная слюда черного или зелено-черного цветов. Слюды имеют твердость 2-3. Мусковит встречается в изверженных и осадочных породах, биотит - в изверженных. Водной разновидностью слюды является вермикулит. Он образован из биотита в результате воздействия гидротермальных процессов. При нагревании вермикулита до 750 °С теряется химически связанная вода, в результате чего объем его увеличивается в 18-40 раз. Вспученный вермикулит применяют в качестве теплоизоляционного материала. Слюды понижают прочность горных пород и ускоряют их выветривание. Каолинит – Al2О3 x 2SiО2 x 2H2О – минерал, получаемый в результате разрушения полевых шпатов и слюд. Залегает в виде землистых рыхлых масс. Применяют для изготовления керамических материалов.
2. Сырье и способы производства портландцемента. Преимущества и недостатки каждого и: Портландцемент — гидравлическое вяжущее вещество, получаемое путем совместного помола цементного клинкера, гипса и добавок, в составе которого преобладают силикаты кальция (70-80 %). Сырьём для производства портландцемента служат смеси, состоящие из 75…78 % известняка (мела, ракушечника, известнякового туфа, мрамора) и 22…25 % глин (глинистых сланцев, суглинков), либо известняковые мергели, использование которых упрощает технологию. Для получения требуемого химического состава сырья используют корректирующие добавки: пиритные огарки, колошниковую пыль, бокситы, пески, опоки, трепелы. Производство портландцемента состоит из следующих процессов: добычи сырья и доставки его на завод; подготовки сырья и смеси; обжига смеси - получения клинкера; измельчения клинкера с добавками - получения цемента. Самые распространённые методы производства портландцемента так называемые «сухой» и «мокрый». Всё зависит от того, каким способом смешивается сырьевая смесь — в виде водных растворов или в виде сухих смесей. По характеру подготовки сырья и приготовления смеси различают мокрый и сухой способы изготовления цемента. При мокром способе сырье дробят и размалывают без дополнительной подсушки. Весьма часто помол осуществляют с добавлением воды, глину размешивают в специальных емкостях - болтушках. Смесь готовят тщательным перемешиванием жидких молотых смесей в шламбассейнах. В этом случае подготовленная смесь - цементный шлам - содержит до 40 % и более воды. При сухом способе тонкое измельчение исходного сырья - помол - осуществляют в сухом состоянии. Тщательное смешивание производят в специальных смесителях. В строительстве наиболее распространен мокрый способ, при котором удается достичь хорошей гомогенности сырьевой смеси, что в конечном итоге обусловливает получение цемента с более высокими и стабильными качествами. В связи с созданием оборудования, обеспечивающего хорошую гомогенизацию в смеси тонкомолотых порошков, сухой способ как более экономичный (не требующий теплоты на испарение воды) и, следовательно, перспективный находит все большее применение.
3. Сортамент круглого леса и его назначениеСтроительный лесоматериал делится на две основные группы: круглый и пиленый лес. Круглый лес в свою очередь подразделяется на бревна и кругляк. К бревнам относится круглый лес диаметром в верхнем отрубе 12 см и более (7,а) с градацией диаметра через 2 см. Круглый лес диаметром в верхнем отрубе менее* 12 см, называемый кругляком, разделяется на подтоварник — диаметром 8—11 см (7,6) и жерди диаметром 3—7 см. Размеры бревен по длине установлены ГОСТ 1047-43 в пределах от 2 до 9 ж с градацией через 0,25 ж, однако в практике строительства чаще всего находят применение бревна средней длины — от 4 до 6,5 м. Диаметр ствола уменьшается от комля к вершине. Это уменьшение — сбег — в среднем колеблется от 1 до 1,5 см, на 1 м длины. При большем сбеге бревна называются закомелистыми или сбежистыми. Они неудобны в работе и неэкономичны, так как при распиловке их на доски получается много отходов. В зависимости от качества бревна подразделяются по сортам. Бревна I сорта идут на выработку строительных пиломатериалов, предназначаемых для несущих конструкций, столярных изделий и для шпал, а II сорта—для менее ответственных деталей зданий и сооружений. Подтоварник и жерди по качеству разделяются на два сорта. Из них изготовляют стойки и обвязки перегородок, столбы заборов, распорки для крепления стенок траншей при земляных работах и т. п. Промежуточное положение между круглым и пиленым лесом занимают пластины, получаемые распиловкой бревен пополам (7,в). Пластины применяются для стен неотапливаемых зданий, для лаг перекрытий и пр. Размеры сечения пластин принято обозначать, как d/2 (например, 140/2 или 180/2), где d — диаметр бревна в мм, из которого получены пластины.
    1. Минералы группы кварца:Кварц – самый распространенный минерал на Земле. Он может быть самых разнообразных цветов и оттенков, может образовывать кристаллы разного размера или иметь скрытокристаллическую структуру (халцедон). Чаще всего кварц встречается в виде сплошных зернистых масс молочно-белого цвета или слагать отдельные зерна в породах. Разновидности - Авантюрин, азуритовый кварц, аметист, аметрин, волосатик, горный хрусталь, дымчатый кварц (раухтопаз), кристобаллит, молочный кварц, морион, празем, розовый кварц, тридимит, цитрин и т.д. Халцедон – группа минералов скрытокристаллического кварца (агат, гелиотроп, кошачий глаз, оникс, плазма, празем, сапфирин, сердолик, хризопраз и т.д.). Опал – водосодержащая разновидность кварца. Породы, состоящие почти целиком из кварца: яшма, кварцит. Благодаря своим ценным свойствам кварц применя­ется в оптике, радиотехнике, часовой промышленности., Из самых красивых разновидностей этого минерала изготавливают ювелирные украшения. Для прозрачных камней применяют разнообразную сложную огранку, полупрозрачные и непрозрачные кристаллы гранят в форме кабошона.
2. Виды деревянных изделий, используемые в строительстве:К деревянным конструкциям относятся: несущие конструкции, изготовляемые из естественной (неклееной) древесины; комплекты изделий и деталей для домов заводского изготовления и клееные конструкции. Деревянными могут быть любые строительные конструкции, в том числе: сруб, опалубка, строительные леса, ферма, перекрытия, стены, потолки, окна и двери, Древесина как отделочный материал: фанера, паркет, паркетная доска, паркетный щит, настенные панели, плинтусы, галтели и уголки, столярная плита, вагонка.
3. Способы придания портландцементу специальных свойствВ ряде случаев (например, при воздействии агрессивной среды, необходимости значительно ускорить темп набора прочности бетона) использование обычного портландцемента неэффективно. Поэтому употребляют портландцементы специальных видов. Чтобы придать портландцементу определенные свойства, регулируют минеральный состав клинкера, вводят в цемент минеральные и органические добавки, изменяют дисперсность и зерновой состав цемента. Портландцемент может выпускаться без добавок или с активными минеральными добавками в количестве до 15% от веса цемента. Для придания цементу специальных свойств (пониженной водопотребности, повышенного воздухосодержания, гидрофобных свойств и т. д.) в цемент могут вводиться специальные добавки. Быстротвердеющий портландцемент (БТЦ) изготовляют из клинкера с повышенным содержанием быстротвердеющих минералов C3S и С3А (в сумме 60...65 %). БТЦ отличается более тонким помолом: его удельная поверхность достигает 3500...4000 см2/г против 3000 см2/г у обычного портландцемента. Благодаря этому увеличивается площадь контакта цементных частиц с водой и скорость твердения его возрастает.
    1. Минералы группы карбонатов:К минералам класса карбонатов относятся соли угольной кислоты, чаще всего это соли кальция, магния, натрия, меди. Всего в этом классе известно около 100 минералов. В осадочных горных породах наиболее часто встречаются породообразующие карбонатные минералы (карбонаты), важнейшие из них — кальцит, магнезит и доломит. Они используются во многих отраслях промышленности: в строительной при производстве цемента и других стройматериалов, металлургической — при изготовлении огнеупоров, оптической, химической, бумажной, стекольной и др. Многие карбонаты являются рудами металлов: Pb, Zn, Cu, Fe, Mn и др.
2. Виды коррозии цементного камня и способы защиты от неё:Коррозия цементного камня в водных условиях по ряду ведущих признаков может быть разделена на три вида: 1) - разрушение цементного камня в результате растворения и вымывания некоторых его составных частей. Наиболее растворимой является гидроксид кальция, образующийся при гидролизе трехкальциевого силиката. Растворимость невелика но из цементного камня в бетоне под воздействием проточных мягких вод количество растворенного и вымытого Са(ОН)2 непрерывно растет, цементный камень становится пористым и теряет прочность. Несколько предохраняет от данного вида коррозии защитная корка из углекислого кальция, образующаяся на поверхности бетона в результате реакции между гидроксидом кальция и углекислотой воздуха. 2) - разрушение цементного камня водой, содержащей соли, способные вступать в обменные реакции с составляющими цементного камня. При этом образуются продукты, которые либо легкорастворимы, либо выделяются в воде аморфной массы, не обладающей связующими свойствами. В результате таких преобразований увеличивается пористость цементного камня и, следовательно, снижается его прочность. 3) относятся процессы, возникающие под действием сульфатов. В порах цементного камня происходит отложение малорастворимых веществ, содержащихся в воде, или продуктов взаимодействия их с составляющими цементного камня. Их накопление и кристаллизация в порах вызывают значительные растягивающие напряжения в стенках пор и приводит к разрушению цементного камня. Характерным видом сульфатной коррозии цементного камня является взаимодействие растворенного в воде гипса с трехкальциевым гидроалюминатом. Исключить или ослабить влияние коррозионных процессов при действии различных вод можно конструктивными мерами, путем улучшения технологии приготовления бетона и применения цементов определенного минералогического состава и необходимого содержания активных минеральных добавок. Защита бетона и других материалов от коррозии вызывает большие расходы. Например, при строительстве химических заводов на антикоррозионную защиту зданий и аппаратов расходуется около 10...15% от общей стоимости строительства. Поэтому при строительстве зданий и сооружений необходимо прежде всего определить характер возможного действия среды на бетон, а затем разработать и осуществить нужные меры для предотвращения коррозии, которые в общем виде сводятся к следующему: 1) правильный выбор цемента, 2) изготовление особо плотного бетона, 3) применение защитных покрытий.
3. Понятия об органических вяжущих, их классификация и свойства:Органические вяжущие вещества представляют собой природные или искусственные твердые, вязкопластичные или жидкие (при комнатной температуре) продукты, способные изменять свои физико-механические свойства в зависимости от температуры. По химическому составу это либо сложные смеси высокомолекулярных углеводородов и их неметаллических производных серы, азота, кислорода (битумы и дегти), либо карбоцепные и гетероцепные соединения, состоящие в основном из атомов углерода в сочетании с атомами водорода, азота, серы, кислорода и кремния (полимеры). Органические вяжущие вещества разделяют на три основные группы: битумы природные и нефтяные; дегти каменноугольные, сланцевые, торфяные и древесные; полимеры полимеризационные и поликонденсационные. В единой классификации строительных конгломератов органические вяжущие вещества располагаются в группе безобжиговых материалов и характеризуются следующими общими признаками: Химический состав их представлен органическими соединениями и все они относятся к продуктам химической переработки природного или синтетического сырья, в основном нефти, каменного угля, горючих сланцев, торфа, древесины, природных газов, нефтегаза, мономеров и т. п. Для получения матрицы (в конгломерате) требуется, чтобы вяжущие вещества обладали заданной консистенцией, обеспечивающей образование тонкой пленки на поверхности заполнителя или наполнителя, что достигают разными способами — нагреванием, растворением, эмульгированием и т. п. 3. Они имеют хорошую адгезию к заполнителям (наполнителям) и обладают способностью сцеплять их в монолит, образуя макро- и микроконгломераты, относящиеся, как и вяжущие, к группе безобжиговых материалов. В той или иной мере они являются гидрофобными и придают водоотталкивающие свойства материалам. Хорошо растворяются в органических растворителях — бензоле, бензине, керосине, толуоле и других, за некоторым исключением, когда только набухают. Многие органические вяжущие вещества имеют склонность к изменению своих первоначальных свойств под воздействием кислорода воздуха, ультрафиолетовых лучей, повышения температуры, солнечной радиации и некоторых других факторов. Практически все они способны гореть, некоторые из них токсичны. При отверждении в присутствии минеральных заполнителей (наполнителей) органические вяжущие вещества образуют асфальтовые или полимерные конгломераты и подобно другим имеют заполняющую часть, вяжущее вещество, контактную зону и поры. При этом вяжущая часть в них может рассматриваться как своеобразный микроконгломерат, активно участвующий в формировании макроструктуры. Строительные материалы и изделия с конгломератным типом структуры в виде асфальто- и дегтебетонов и растворов, пластических масс и других при оптимальной структуре подчиняются основным законам общей теории ИСК.
    1. Механические свойства строительных материалов. Механические свойства характеризуются способностью материала сопротивляться всем видам внешних воздействий с приложением силы. По совокупности признаков различают прочность материала при сжатии, изгибе, ударе, кручении и т. д., твердость, пластичность, упругость, истираемость. Прочность — свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки. Изучением этого свойства материалов занимается специальная наука — сопротивление материалов. Ниже излагаются общие понятия о прочности материалов, необходимые для изучения основных свойств строительных материалов. Материалы, находясь в сооружении, могут испытывать различные нагрузки. Наиболее характерными для строительных конструкций являются сжатие, растяжение, изгиб и удар. Каменные материалы (гранит, бетон) хорошо сопротивляются сжатию и намного хуже - растяжению, изгибу, удару, поэтому каменные материалы используют главным образом в конструкциях, работающих на сжатие. Такие материалы, как металл и древесина, хорошо работают на сжатие, изгиб и растяжение, поэтому их используют в конструкциях, испытывающих эти нагрузки. Прочность строительных материалов характеризуется пределом прочности. Пределом прочности (Па) называют напряжение, соответствующее нагрузке, вызывающей разрушение образца материала. Предел прочности при сжатии различных материалов 0,5... 1000 МПа и более. Прочность на сжатие определяют испытанием образцов на механических или гидравлических прессах. Твердость — способность материала сопротивляться проникновению в него другого более твердого тела. Твердость не всегда соответствует прочности материала. Для определения твердости существует несколько методов. Твердость каменных материалов оценивают по шкале Мооса, состоящей из десяти минералов, расположенных по степени возрастания их твердости. Показатель твердости испытуемого материала находится между показателями твердости двух соседних минералов, из которых один чертит, а другой чертится этим материалом. Твердость металлов и пластмасс определяют вдавливанием стального шарика. От твердости материалов зависит их истираемость. Это свойство материала важно при обработке, а также при использовании его для полов, дорожных покрытий. Деформация — изменение размеров и формы материалов под нагрузкой. Если после снятия нагрузки образец материала восстанавливает свои размеры и форму, то деформацию называют упругой, если же он частично или полностью сохраняет изменение формы после снятия нагрузки, то такую деформацию называют пластической. Упругость — свойство материала восстанавливать после снятия нагрузки свою первоначальную форму и размеры. Пределом упругости считают напряжение, при котором остаточные деформации впервые достигают некоторой очень малой величины (устанавливаемой техническими условиями на данный материал). Пластичность — свойство материала изменять свою форму под нагрузкой без появления трещин (без нарушения сплошности) и сохранять эту форму после снятия нагрузки. Все материалы делятся на пластичные и хрупкие. К пластичным материалам относят сталь, медь, глиняное тесто, нагретый битум и т. п. Хрупкие материалы разрушаются внезапно без значительной деформации. К ним относят каменные материалы. Хрупкие материалы хорошо сопротивляются только сжатию и плохо — растяжению, изгибу, удару. Износостойкость – способность материала противостоять воздействию на него сил трения и ударных воздействий от движущихся предметов.
2. Влияние температуры и влажности среды на твердение портландцемента. Способы ускорен -Портландцемент — гидравлическое вяжущее вещество, твердеющее в воде и на воздухе. Его получают тонким измельчением обожженной до спекания сырьевой смеси известняка и глины, обеспечивающей преобладание в клинкере силикатов кальция. Твердение портландцемента — при затворении портландцемента водой образуется пластичное клейкое цементное тесто, постепенно густеющее и переходящее в камневидное состояние. При твердении портландцемента происходит ряд весьма сложных химических и физических явлений. Каждый из минералов при затворении водой реагирует с ней и дает различные новообразования. Все процессы взаимодействия отдельных клинкерных минералов с водой протекают одновременно, налагаются один на другой и влияют друг на друга. Твердение цементного камня и повышение его прочности могут продолжаться только при наличии в нем воды, так как твердение есть в первую очередь процесс гидратации. Большое влияние на рост прочности цементного камня оказывают влажность и температура среды. Температура оказывает очень большое влияние на твердение портландцемента и его производных. При температурах от 0°С до 5-8°С происходит значительное (в 2-3 раза) по сравнению с твердением при обычных температурах замедление этих процессов, а при температурах ниже 0°С они почти полностью прекращаются. Повышение же температуры твердеющих растворов и бетонов сопровождается большим ускорением роста прочности. Резкое ускорение процессов твердения цементов и бетонов наступает при температурах 70-95°С и особенно при 175-200°С и выше. Однако такое интенсивное воздействие температуры на твердение цементов, а следовательно, и бетонов проявляется лишь при наличии в них воды в жидком состоянии. Недостаток воды во время твердения при повышенных температурах не только замедляет процессы гидратации, но и снижает прочность и стойкость бетонов. При полном испарении воды процессы твердения прекращаются. Твердения портландцементного камня при отрицательных температурах не происходит, так как вода превращается в лед. Однако за счет добавки СаСl2, NaCl или их смеси бетон все же набирает прочность. Добавление к цементу электролитов в количестве 5% и более от массы цемента повышает концентрацию растворенных веществ в воде и понижает температуру ее замерзания. Кроме того, хлористые соли являются ускорителями твердения цемента. Ускорение твердения портландцемента при введении CaCl2 объясняется его каталитическим воздействием на гидратацию C3S и C2S, а также реакцией с C3A и C4AF с образованием хлоралюминатов. Так как большинство химических процессов, в том числе гидратация и гидролиз, ускоряется при повышении температуры, то для ускорения твердения цемента широко применяют тепловлажностную обработку бетонов и изделий из них; иногда одновременно используют введение в бетон химических добавок — ускорителей твердения. Замедление схватывания цементного теста может быть достигнуто введением в смесь специальных веществ - замедлителей. Для замедления схватывания портландцемента используют гипс, сульфитно-спиртовую барду, борную кислоту, соли ортофос-форной кислоты, а для ускорения - СаС12, НС1, Na2COs, триэтаноламин, глиноземистый цемент, растворимое стекло и ряд других веществ
3. Понятие о стали и чугуне. Способы их производстваНаиболее широкое применение в современном машиностроении имеют железоуглеродистые сплавы – сталь и чугун. Сталь - это сплав железа с углеродом; содержание углерода в стали не превышает 2%. Чугун - сплавы железа с углеродом, в которых содержание углерода превышает 2%. Среднее содержание углерода в чугуне 2,5-3,5%. Кроме железа и углерода, в сталях и чугунах присутствуют примеси: кремний и марганец в десятых долях процента (0,15-0,60%), сера и фосфор в сотых долях процента (0,05-0,03%) каждого элемента. Свойства стали зависят от содержания углерода. Чем больше углерода, тем сталь прочнее и тверже. По составу и строению чугун делится на белый, серый и ковкий. Обычно для производства чугуна используют: - магнитный железняк (Fе3О4) с содержанием железа до 70 %, - красный железняк (Fе2О3), содержащий до 65 % железа, - бурый железняк (2Fе2О3-2Н2О), содержащий до 60 % железа. Топливом в доменном процессе служит кокс, получаемый при сухой перегонке (сжигании без доступа воздуха) коксующихся каменных углей. Флюсы (плавни) – известняки, доломиты и песчаники – применяют для понижения температуры плавления пустой породы и перевода ее и золы топлива в шлак. Доменная печь представляет собой шахту, снаружи покрытую металлическим кожухом и изнутри футерованную огнеупорным кирпичом. В печь через верхнюю часть, называемую колошником, непрерывно загружают шихтой, чередуя слои руды, флюса и топлива. Для поддержания горения топлива в нижнюю часть печи – горн – через фурмы подают под давлением нагретый воздух. Горение топлива – кокса – происходит в верхней части горна за счет кислорода воздуха по реакции С+О2=СО2. Образующийся при этом углекислый газ поднимается вверх по печи и, встречая на своем пути раскаленный кокс, переходит в оксид углерода: СО2+С=2СО. Оксид углерода восстанавливает оксиды железа до чистого железа, а сам переходит в углекислый газ. Восстановление железа происходит по схеме: Fе2О3->Fе3О4->FеО->Fе Восстановление железа из его оксидов происходит во время движения шихты под действием собственной массы от верхней части печи к нижней. В нижней части печи при 900-1100°С часть восстановленного железа соединяется с углеродом, в результате чего получается карбид железа Fе3С. Этот процесс называют науглероживанием. При температуре около 1150°С начинается плавление науглероженного железа, и образовавшийся жидкий чугун стекает в горн печи. Сюда же стекает расплавленный шлак, который как более легкий материал всплывает над чугуном. Расплавленные чугун и шлак периодически выпускают через специальные отверстия – чугунную и шлаковую летки, причем сначала выпускают шлак, а затем – чугун. Чугун в расплавленном состоянии подают к разливочным машинам для отливки в «чушки» или в специальных ковшах доставляют в сталеплавильные цехи, где его перерабатывают в сталь. Процесс производства стали состоит в уменьшении содержания имеющихся в предельном чугуне примесей углерода, кремния, марганца, серы, фосфора. Указанные примеси при выплавке стали выгорают, либо переходя

Дата публикования: 2015-09-17; Прочитано: 582 | Нарушение авторского права страницы



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...