Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Загадки ориентировки



Следовательно, поведение животных подчиняет­ся строго определенным законам, основой которых являют­ся соответствующие условия окружающей среды, напри­мер земное притяжение, свет и т. д.

Каждый из живущих ныне видов животных в ходе своего развития, длившегося сотни миллионов лет, при­обрел органы чувств, с помощью которых он воспринимает отдельные изменения окружающей среды. В течение этого длительного периода времени у животных сформи­ровались ответные движения и другие реакции на раз­дражения. Различные факторы окружающей среды приобрели [35]определенное значение для разных животных. Однако нельзя думать, будто из бесконечного многообра­зия факторов окружающей среды каждое животное отбира­ет те, которые замечаем и мы, люди. Часто трудно уста­новить, какие раздражители окружающей среды дают клю­чи к пониманию поведения отдельных животных.

Однако некоторые исследователи с идеалистическим уклоном предполагают, что животные обладают таинст­венными, кажущимися даже сверхъестественными спо­собностями. Их поведение кажется людям непонятным. Однако в действительности это не так. Рано или позд­но всегда удается найти естественнонаучное, материа­листическое объяснение поведению животных, которое прежде казалось поразительным, но для этого надо под­ходить к вопросу с большим терпением и вдумчивостью. Приведем здесь несколько известных примеров.

Для того чтобы раскрыть секрет ориентировки лету­чих мышей, потребовались исследования, проводившиеся в течение добрых полутора столетий. Первые опыты были проделаны еще Спалланцани в конце XVIII в. Этот чрез­вычайно многосторонний ученый — священник, лингвист, историк — был одним из основателей экспериментального естествознания.

Спалланцани впустил летучих мышей в темное поме­щение, в котором повсюду были натянуты веревки с при­вязанными к ним маленькими колокольчиками. Летучие мыши летали в темном помещении, не задевая ни одну из веревок. Спалланцани подумал, что летучие мыши ви­дят в темноте, и выколол им глаза. Но слепые летучие мыши с такой же ловкостью продолжали свои полеты, как и прежде.

Работа исследователя застопорилась, он начал было подозревать существование у летучих мышей каких-то сверхъестественных способностей. В это время один из дру­зей сообщил ему из Женевы, что летучие мыши обходят все препятствия благодаря своему слуху. Действительно, когда Сналланцани залил уши этих животных воском, они, утра­тив свою замечательную способность ориентироваться, на­летали на натянутые веревки. (Эти летучие мыши, впро­чем, с большим трудом решались подняться в воздух.)

На этом завершились исследования Спалланцани. Поз­же распространилось мнение известного биолога Кювье, утверждавшего, что у летучих мышей чрезвычайно [36]развито осязание и что именно этим объясняются их порази­тельные способности.

Наконец, в 1941 г. Галамбошу и Гриффину удалось рас­крыть загадку способности летучих мышей ориентировать­ся в темноте. В настоящее время уже общеизвестно, что летучие мыши ориентируются при помощи ультразвука. Летучие мыши улавливают звуки, достигающие 100 000 ко­лебаний в секунду. Человеческое ухо, воспринимающее звуки, имеющие около 16000—20000 колебаний в секунду, конечно, не слышит ультразвуков. Однако летучие мыши способный издавать подобные «коротковолновые» звуки. Во время полета они непрерывно издают, если можно так выразиться, крики, состоящие из ультразвуков. Особенно­стью этих звуков является то, что они отражаются даже от самых мельчайших предметов так же, как отражаются элек­тромагнитные волны радарных установок. Они слышат эхо издаваемых ими ультразвуков, недоступных нашему слуху, а эти отраженные звуки как бы обрисовывают форму пред­метов.

Можно ли слышать форму предметов?

Форму предметов на больших расстояниях мы узнаем в результате отражения электромагнитных волн (света), а вблизи — на ощупь. Следовательно, существует два спосо­ба осязания, которые дают нам возможность непосредствен­но воспринимать размеры предметов. Размеры предметов — это свойства, находящиеся вне нас. Также независимо от нас существует в окружающей среде свет, то есть электро­магнитные колебания. Когда мы на ощупь определяем фор­му предмета, то молекулы поверхности нашего тела при­ходят в непосредственное соприкосновение с молекулами предметов. Когда мы воспринимаем отражение световых лучей от предметов, то получаем косвенное представление об их поверхности. С принципиальной точки зрения все равно, использует ли организм отражение света, или же, например, отражение ультразвука. Своеобразный слух ле­тучих мышей не представляет собой сверхъестественного явления, но подобный способ получения сведений о форме предметов недоступен человеку.

Научные исследования установили, что летучие мыши с помощью ультразвука обнаруживают летающих ночных бабочек. Бабочки слышат «ультразвуковые» крики летучих мышей. Ультразвук как бы парализует бабочек, и они па­дают вниз, спасаясь от своих преследователей. [37]

Изучение поведения летучих мышей помогло людям раскрыть определенные свойства ультразвука. Изучение поведения пчел раскрыло значение поляризованного све­та для ориентации некоторых животных.

Из обширного мира насекомых одомашнены только шелкопряд и пчела. Жизнь пчел представляет собой одно из интереснейших явлений животного мира. Их поведение чрезвычайно сложно, но особенности их жизни в настоя­щее время уже в значительной мере изучены. Для нас те­перь особенно интересно то, что пчелы способны не только собирать пищу в улей, но могут указать другим пчелам место, где обнаружена пища, и побудить их принять уча­стие в накоплении большего ее количества. Метод, с по­мощью которого они «передают свой опыт», называется «танцем» пчел.

«Танец» пчелы.

Одна из форм этого танца состоит в том, что пчела бегает по полу улья так, как конькобежец-фигурист, выписывающий «восьмерку». Она делает один круг, за­тем рядом с этим кругом — второй, а потом вновь возвра­щается к прежнему кругу и т. д., то есть движется по контуру восьмерки. Середина этой восьмерки представля­ет собой прямую линию, являющуюся линией соприкосновения [38] двух похожих па окружности замкнутых кривых (нельзя считать, что это два соприкасающихся точных круга, скорее это две кривые, которые похожи на контур двух булочек, приложенных друг к другу нижней частью). Направление этой прямой линии обозначает, как выясни­лось, направление к обнаруженному источнику питания по отношению к солнцу (см. рис.)

Откуда знает, однако, пчела, прилетевшая на «место танца», в каком направлении от нее расположен источ­ник питания? В случае танца по горизонтальной плоско­сти пчела только тогда может установить это направле­ние, если снаружи на нее падает хотя немного света. Для нее достаточно, если виднеется кусочек синего неба.

Следовательно, пчела может использовать синеву неба для определения направления. Верно ли это?

С экспериментальной целью в улей, повернутый к се­веру, зеркалом отразили синеву западной части неба. По­сле этого направление танца пчел внезапно изменилось. Следовательно, пчелы действительно в состоянии каким-то образом ориентироваться по синеве неба. С помощью опытов удалось объяснить это явление. Выяснилось, что пчелы чувствуют поляризованный свет, а отраженный от неба свет имеет примесь поляризованного света.

Мы знаем, что свет — это электромагнитные волны. В обычном неполяризованном свете колебания бывают различных направлений. В поляризованном свете колеба­ния — одного направления, поэтому при отражении, т. е. при преломлении, он ведет себя иначе, чем простой свет. Человеческий глаз без соответствующих оптических при­боров не может различить простой и поляризованный свет. Теперь у нас достаточно этих сведений и мы можем вернуться к затронутому вопросу.

Процент поляризованного света и его направление на разных участках небосклона связаны с положением солн­ца, и, таким образом, при помощи поляризованного света по голубым участкам неба можно сделать вывод о по­ложении солнца. Для пчел этот процесс настолько же прост, как для нас — различение цвета. С точки зрения восприятия пчел, это явление очень простое, но если мы попытаемся перевести его на язык физики, то все станет довольно сложным.

Из всего сказанного особенно важно то, что исследо­вание явлений, связанных с ориентацией пчел, и других [39]особенностей их поведения, кажущихся непонятными, привело науку к познанию роли поляризованного солнеч­ного света у животных. Выяснилось, что и птицы способ­ны, не видя солнца, чувствовать с помощью поляризо­ванного света положение солнца.

Конечно, и это было выяснено с помощью опытов. Опыты были проведены над скворцами, т. е. над птицами, которые осенью улетают. В период отлета скворцы, со­держащиеся в большой клетке, начинают собираться в той ее части, которая соответствует направлению пере­лета птиц, находящихся на воле[5]. Как устанавливают скворцы соответствующее направление?

Выяснилось, что куда бы мы ни переносили клетки с этими птицами, достаточно было им увидеть маленький кусочек неба, как они тут же перемещались в указанную часть клетки. Способность птиц ориентироваться основы­вается на свойствах поляризованного света точно так же, как это происходит у пчел. Если около клетки поставить зеркало, в котором отражен небосклон, т. е. если птицы увидят природу «наизнанку», то они немедленно переме­щаются в противоположном направлении.

Упомянем еще об одном-двух фактах, связанных со способностью птиц ориентироваться во время перелета, которые кажутся загадочными. Птицы, оставляя места гнездования, совершают во время своего перелета в теп­лые края путь в несколько тысяч километров, а весной снова возвращаются назад. Поразительной является, на­пример, способность почтовых голубей возвращаться до­мой, пролетая многие сотни километров.

Недавно выяснилось, что перелетные птицы ориенти­руются днем по солнцу, а ночью по звездам. Этому спо­собствует опыт, накопленный и переданный десятками и сотнями тысяч птичьих поколений. Можно доказать, на­пример, способность птиц ориентироваться по звездам. Известно, что перелетные птицы, живущие в больших клетках, осенью концентрируются в южном конце клетки, а весной — в северном. [40]

Расположение полукружных каналов.

На сводчатой крыше клетки воспроизводили, как на экране, картину ночного неба с точным расположением звезд. В течение некоторого времени птицам показывали по ночам картину неба, соответствовавшую привычному пути осеннего перелета, и птицы располагались в клетке согласно направлению их перелета. Затем внезапно вос­становили картину небосвода, которая существовала до начала опыта. Это привело птиц в полное смятение, но очень быстро они переместились в том направлении, ко­торое соответствовало направлению их перелета.

Следовательно, птицы способны изменять свое рас­положение в зависимости от расположения звезд на небе. Совершенно ясно, что эта способность является основой для ориентации во время перелета.

Что же касается способности почтовых голубей ори­ентироваться, то и здесь ученые во многом разобрались. Раньше, однако, нам необходимо познакомиться с так на­зываемыми полукружными каналами, являющимися орга­нами равновесия и составляющими часть внутреннего уха у позвоночных. В височной кости позвоночных с обеих сторон расположены по три маленьких канальчика. Это и есть полукружные каналы, которые располагаются [41]очень своеобразно: два из них лежат всегда в одной и той же плоскости, т. е. шесть полукружных каналов распо­лагаются в трех плоскостях. В свою очередь три плоскости пересекают друг друга под прямым углом. Эти особен­ности и обеспечивают деятельность полукружных каналов.

Действие полукружных каналов.

В полукружных каналах содержится жидкость. Каждый полукружный канал имеет выпуклую часть, в которой рас­положена поперечная перегородка. Куда бы ни повернулась голова жи­вотного, эта жидкость в силу инер­ции следует за поворотом головы только с опозданием и оказывает давление на перегородку. Это и про­изводит раздражение[6]. Давление жидкости на перегородку в спарен­ных полукружных каналах меняется в зависимости от того, в какую сто­рону происходит поворот головы и куда повернется животное. Если почтовый голубь летит прямо, необходимо лишь, чтобы он неподвижно держал голову, тогда всякое откло­нение от прямого курса раздражает полукружные каналы. Голубь, у которого удалены оба горизонтальных полу­кружных канала, летать может, он даже двигается вперед, но делает при этом большие крюки то вправо, то влево.





Дата публикования: 2015-07-22; Прочитано: 266 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...