Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Гироскопические приборы



Если массивному физическому телу задать вращение относительно оси Х (рис. 5.23), то направление этой оси в пространстве останется неизменным при любом последующем изменении направлений осей Y и Z (при условии отсутствия сил трения в опорах подвесок). Такая система называется свободным гироскопом.

Если на ось Х при вращении его ротора воздействовать внешней силой, то эта ось будет поворачиваться (прецессировать) в плоскости, перпендикулярной приложенной силе.

На рис. 5.23 а показан трёхстепенной гироскоп, с тремя степенями свободы. Если одну степень свободы ограничить, например, создать вокруг оси чувствительности У дополнительную маятниковую нагрузку (рис. 5.23 б), то центр тяжести этой системы сместится вниз. Такая система называется маятниковым гирокомпасом. В гирокомпасе груз Р заставляет ось Х принимать положение, параллельное плоскости горизонта.

Указанное явление (свободного гироскопа) происходит при вращении Земли вокруг своей оси. Как известно, ось Земли в мировом пространстве занимает весьма длительное время неизменное положение, в результате чего и происходит смена времен года, поскольку эта ось наклонена к плоскости, в которой Земля вращается вокруг Солнца.

Рис. 5.23. Схема гироскопа:

а – свободный гироскоп; б – маятниковый гироскоп.

При вращении Земли вокруг своей оси в пространстве одновременно вращается (поворачивается) плоскость горизонта вокруг меридиана места и плоскость самого меридиана вокруг отвесной линии. Все эти вращения связаны с первичным, т.е. угловой скоростью вращения Земли ω, и широтой места φ:

- для угловой скорости ω1 вращения горизонта –

; (5.18)

- для угловой скорости ω2 вращения меридиана места –

. (5.19)

Составляющая ω1 определяет изменение высоты Солнца и других небесных тел относительно горизонта, а составляющая ω2 показывает изменение положения светил по азимуту.

Предположим, что ось Х гирокомпаса установлена на широте φ под углом α к меридиану. При суточном вращении Земли положение оси Х по отношению к плоскости горизонта будет непрерывно изменяться – северный её конец будет подниматься над горизонтом. В то же время, на главную ось Х действует момент силы тяжести маятникового груза. Этот момент приложен в вертикальной плоскости, и его действие вызывает поворот этой плоскости к меридиану в горизонтальной плоскости. В результате непрерывных воздействий указанных сил главная ось гирокомпаса получает незатухающие гармонические колебания относительно направления меридиана места. Период Т незатухающих колебаний зависит от маятникового момента М гирокомпаса, кинетического момента Н ротора, угловой скорости ω суточного вращения Земли и широты φ стояния:

. (5.20)

В действительности, из-за воздействия сил трения в опорах, в токопроводящих устройствах и т.п., колебания главной оси гирокомпаса постепенно затухают, ось Х при этом движется не по замкнутому эллипсу, а по эллипсовидной спирали, что вызывает погрешность в определении направления. Эту погрешность, как систематическую, определяют специальными приёмами в процессе измерений и вводят в виде поправки в измеренную величину.

Здесь следует заметить, что гироскопические геодезические приборы не являются чисто оптическими приборами, рассмотренными выше, поскольку они включают в себя весьма сложные электрические и электронные системы, обеспечивающие работу гирокомпаса и управление им.

Гирокомпасы широко используют для ориентирования линий на поверхности земли и в подземных горных выработках, поскольку, как указывалось выше, главная их ось сохраняет своё направление по меридиану места (как на поверхности, так и под землей). Использование гирокомпасов в подземных условиях значительно сокращает объём работ по ориентированию подземных маркшейдерских сетей.

В настоящее время на службе у маркшейдеров находятся различные гирокомпасы трёх основных групп. Некоторые гирокомпасы уже устарели, сведения о них приводятся как историческая справка.

В 1951-1959 гг. выпускались гирокомпасы М-2, М-3, МУГ-2 с жидкостным подвесом чувствительного элемента (ЧЭ) и электромагнитным центрированием. Подобные конструкции, но во взрывобезопасном исполнении (что важно для подземных условий), имеют гирокомпасы МВ1, МВ2, МВ2М, МВШ3, в обычном исполнении – МГ. Эти гирокомпасы использовались до 1969 г.

Сейчас наибольшее распространение получают гирокомпасы с торсионным подвесом ЧЭ. К ним относятся марки МВТ2, МВТ4, а также гиробуссоль МВГ4М. Ошибка единичного определения азимута прибором МВТ2 составляет 30", МВБ4М - 40", но время определения азимута гиробуссолью составляет 15 мин., в то время как для гирокомпаса оно равно 20 мин. Существенным является и то, что вес гиробуссоли (19 кг) в два раза меньше, чем вес гирокомпаса.

Кроме указанных выше приборов имеются и другие марки (гиротеодолиты), точность измерения азимутов которыми составляет от 5" до 20": Ги-Б1 (15" - 20"); Ги-Б2 (10" - 15"); Ги-Б3 (5" - 8") и др.

При измерениях (ориентировании) с помощью гирокомпаса отсчет No, соответствующий среднему (равновесному) положению главной оси, определяют по наблюдению четырёх последовательных реверсий: n1, n2, n3 и n4. Точки реверсии – это крайние точки азимутальных колебаний ЧЭ, в которых происходит смена направления его видимого движения. Отсчёт No вычисляют как средний из разности

, (5.21)

где

, .

Полученное значение No соответствует отсчёту по горизонтальному кругу теодолита в месте пересечения с плоскостью меридиана.

В шахте и на поверхности гироскопические азимуты исходных сторон геодезической или маркшейдерской сети определяют дважды независимо. Погрешность в двух определениях не должна превышать 2'.





Дата публикования: 2015-07-22; Прочитано: 1019 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...