Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Устойчивость работы промышленных объектов в ЧС

Устойчивость промышленного объекта в ЧС может оцениваться в общей и частных постановках задачи. В общей постановке оценивается функционирования объекта в целом в соответствии с его целевым предназначением. В частных постановках может оцениваться устойчивость конструктивных элементов, участков, цехов или даже отдельных функций объекта относительно отдельных или всех в совокупности поражающих факторов ЧС.

Под устойчивостью работы промышленного объекта понимают способность объекта выпускать установленные виды продукции в объемах и номенклатуре, предусмотренных соответствующими планами в условиях ЧС, а также приспособленность этого объекта к восстановлению в случае повреждения. Для объектов, не связанных с производством материальных ценностей (транспорта, связи, линий электропередач и т.п.), устойчивость определяется его способностью выполнять свои функции. Под устойчивостью технической системы понимается возможность сохранения ею работоспособности в ЧС.

Повышение устойчивости технических систем и объектов достигается организационно-техническими мероприятиями, которым всегда предшествует исследование устойчивости конкретного объекта.

На первом этапе исследования устойчивости конкретного объекта и уязвимость его элементов в условиях ЧС анализируют:

- район расположения объекта;

- надежность установок и технологических комплексов;

- последствия аварий отдельных систем производства;

- распространение ударной волны по территории предприятия при взрывах сосудов, коммуникаций, ядерных зарядов и т. п.,

- распространение огня при пожарах различных видов;

- рассеивание веществ, высвобождающихся при ЧС;

- возможность вторичного образования токсичных, пожаро- и взрывоопасных смесей и т. п.

На втором этапе исследования разрабатывают мероприятия по повышению устойчивости и подготовке объекта к восстановлению после ЧС. Эти мероприятия составляют основу плана-графика повышения устойчивости объекта. В плане указывают объем и стоимость планируемых работ, источники финансирования, основные материалы и их количество, машины и механизмы, рабочую силу, ответственных исполнителей, сроки выполнения и т. д.

Исследование устойчивости функционирования объекта проводится на всех стадиях жизненного цикла технической системы: проектирования (когда определяются задачи, формируются требования, рассчитываются параметры, разрабатываются чертежи); создания (когда в процессе изготовления или производства концепция и конструкция начинают воплощаться в жизнь); эксплуатации (когда система ЧМС осуществляет возложенные, на нее рабочие функции и затем ликвидируется).

Каждая реконструкция или расширение объекта также требует нового исследования устойчивости. Таким образом, исследование устойчивости — это не одноразовое действие, а длительный, динамичный процесс, требующий постоянного внимания со стороны руководства, технического персонала, служб гражданской обороны.

На устойчивость объекта влияют: характер застройки территории (структура, тип, плотность застройки), окружающие объект смежные производства, транспортные магистрали, естественные условия прилегающей местности (лесные массивы — источники пожаров, водные объекты — возможные транспортные коммуникации, огнепреградительные зоны и в то же время источники наводнений и т. п.).

При изучении устойчивости объекта дают характеристику зданиям основного и вспомогательного производства, а также зданиям, которые не будут участвовать в производстве основной продукции в случае ЧС. Устанавливают основные особенности их конструкции, указывают технические данные, этажность, длину и высоту, вид каркаса, стеновые заполнения, световые проемы, кровлю, перекрытия, степень износа, огнестойкость здания, число рабочих и служащих, одновременно находящихся в здании (наибольшая рабочая смена), наличие встроенных в здание и вблизи расположенных убежищ, наличие в здании средств эвакуации и их пропускная способность.

При оценке внутренней планировки территории объекта определяется влияние плотности и типа застройки на возможность возникновения и распространения пожаров, образования завалов входов в убежища и проходов между зданиями. Особое внимание обращается на участки, где могут возникнуть вторичные факторы поражения. Такими источниками являются: емкости с ЛВЖ и СДЯВ, склады ВВ и взрывоопасные технологические установки; технологические коммуникации, разрушение которых может вызвать пожары, взрывы и загазованность, склады легковоспламеняющихся материалов, аммиачные установки и др. При этом прогнозируются последствия следующих процессов:

- утечки тяжелых и легких газов или токсичных дымов;

- рассеивания продуктов сгорания во внутренних помещениях;

- пожары цистерн, колодцев, фонтанов;

- нагрева и испарения жидкостей в бассейнах и емкостях;

- воздействие на человека продуктов горения и иных химических веществ;

- радиационного теплообмена при пожарах;

- взрывов паров ЛВЖ;

- образования ударной волны в результате взрывов паров ЛВЖ, сосудов, находящихся под давлением, взрывов в закрытых и открытых помещениях;

- распространение пламени в зданиях и сооружениях объекта и т. п.

Технологический процесс изучается с учетом специфики производства на время ЧС (изменение технологии, частичное прекращение производства, переключение на производство новой продукции и т. п.). Оценивается минимум и возможность замены энергоносителей; возможность автономной работы отдельных станков, установок и цехов объекта; запасы и места расположения СДЯВ, ЛВЖ и горючих веществ; способы безаварийной остановки производства в условиях ЧС. Особое внимание уделяется изучению систем газоснабжения, поскольку разрушение этих систем может привести к появлению вторичных поражающих факторов.

При исследовании систем управления производством на объекте изучают расстановку сил и состояние пунктов управления и надежности узлов связи; определяют источники пополнения рабочей силы, анализируют возможности взаимозаменяемости руководящего состава объекта.

Любой промышленный объект включает наземные здания и сооружения основного и вспомогательного производства, складские помещения и здания административно-бытового назначения. В зданиях и сооружениях основного и вспомогательного производства размещается типовое технологическое оборудование, сети газо-, тепло-, электроснабжения. Между собой здания и сооружения соединены сетью внутреннего транспорта, сетью энергоносителей и системами связи и управления. На территории промышленного объекта могут быть расположены сооружения автономных систем электро- и водоснабжения, а также отдельно стоящие технологические установки и т. д. Здания и сооружения возводятся по типовым проектам, из унифицированных материалов. Проекты производств выполняются по единым нормам технологического проектирования, что приводит к среднему уровню плотности застройки (обычно 30—60 %). Все это дает основание считать, что для всех промышленных объектов, независимо от профиля производства и назначения, характерны общие факторы, влияющие на устойчивость объекта и подготовку его к работе в условиях ЧС.

На устойчивость работы объекта в условиях чрезвычайных ситуаций оказывают влияние следующие факторы:

- район расположения объекта (определяет уровень и вероятность воздействия поражающих факторов природного происхождения (сейсмическое воздействие, сели, оползни, тайфуны, наводнения, число гроз, ливневых дождей и т. д.). Поэтому большое внимание уделяется исследованию и анализу района расположения объекта. При этом выясняются метеорологические условия района (количество осадков, направление господствующих ветров, максимальная и минимальная температура самого жаркого и самого холодного месяца; изучается рельеф местности, характер грунта, глубина залегания подпочвенных вод, их химический состав. Важное значение имеет дублирование транспортных путей и систем энергоснабжения. Так, если предприятие расположено вблизи судоходной реки, в случае разрушения железнодорожных или трубопроводных магистралей подвоз сырья или вывоз готовой продукции может осуществляться водным транспортом);

- огнестойкость элементов оборудования и зданий, их конструктивной и функциональной пожарной опасности. (Под огнестойкостью понимают способность строительной конструкции сопротивляться воздействию высокой температуры в условиях пожара и выполнять при этом свои обычные эксплуатационные функции. Потеря несущей способности определяется обрушением конструкции или возникновением предельных деформаций и обозначается индексом R. Потеря ограждающих функций определяется потерей целостности или теплоизолирующей способности. Потеря целостности обусловлена проникновением продуктов сгорания за изолирующую преграду и обозначается индексом Е. Потеря теплоизолирующей способности определяется повышением температуры на необогреваемой поверхности конструкции в среднем более чем на 140 °С или в любой точке этой поверхности более чем на 180 °С и обозначается иднексом J.

Основные положения методов испытаний конструкций на огнестойкость изложены в ГОСТ 30247.0–94 «Конструкции строительные. Методы испытаний на огнестойкость. Общие требования» и ГОСТ 30247.1–94 «Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции».

Степень огнестойкости здания определяется огнестойкостью его конструкций в соответствии с табл. 1 (СНиП 21–01–97 или СНиП ПМР 21-01-03 «Пожарная безопасность зданий и сооружений»).

СНиП 21–01–97 регламентирует классификацию зданий по степени огнестойкости, конструктивной и функциональной пожарной опасности. Эти нормы введены в действие с 1 января 1998 г.

Таблица 1. Огнестойкости строительных конструкций

Степень огнестойкости здания   Максимальные пределы огнестойкости строительных конструкций  
несущие элементы здания   наружные стены   перекрытия междуэтажные чердачные и над подвалом   покрытия бесчердач-ные   лестничные клетки  
внутренние площадки стены   марши лестниц  
I II III IV     II III IV   R120 R90 R45 R45   RE30 RE15 RE15 RE15   REJ60 REJ45 REJ45 REJ15     RE30 RE15 RE15 RE15   REJ120 REJ90 REJ60 REJ45   R60 R60 R45 R15    
V Не нормируется

Класс конструктивной пожарной опасности здания определяется степенью участия строительных конструкций в развитии пожара и образовании его опасных факторов.

По пожарной опасности строительные конструкции подразделяются на классы: КО, Kl, K2, КЗ (ГОСТ 80–403–95 «Конструкции строительные. Метод определения пожарной опасности»).

По функциональной пожарной опасности здания и помещения подразделяются на классы в зависимости от способа их использования и от того, в какой мере безопасность людей в них, в случае возникновения пожара, находится под угрозой, с учетом их возраста, физического состояния, сна или бодрствования, вида основного функционального контингента и его количества.

К классу Ф1 относятся здания и помещения, связанные постоянным или временным проживанием людей, в который входят:

– Ф1.1–детские дошкольные учреждения, дома престарелых и инвалидов, больницы, спальные корпуса школ-интернатов и детских учреждений;

– Ф1.2–гостиницы, общежития, спальные корпуса санаториев и домов отдыха, кемпингов и мотелей, пансионатов;

– Ф1.3–многоквартирные жилые дома;

-- Ф1.4–индивидуальные, в том числе блокированные дома.

К классу Ф2 относятся зрелищные и культурно-просветительские учреждения, в который входят:

– Ф2.1–театры, кинотеатры, концертные залы, клубы, цирки, спортивные сооружения и другие учреждения с местами для зрителей в закрытых помещениях;

– Ф2.2–музеи, выставки, танцевальные залы, публичные библиотеки и другие подобные учреждения в закрытых помещениях;

- Ф2.3– то же, чтоФ2.1, но расположенные на открытом воздухе.

К классу ФЗ относятся предприятия по обслуживанию населения:

– Ф3.1–предприятия торговли и общественного питания;

– Ф3.2–вокзалы;

– ФЗ.З– поликлиники и амбулатории;

– Ф3.4–помещения для посетителей предприятий бытового и коммунального обслуживания населения;

– Ф3.5–физкультурно-оздоровительные и спортивно-тренировочные учреждения без трибун для зрителей.

К классу Ф4 относятся учебные заведения, научные и проектные организации:

– Ф4.1– общеобразовательные школы, средние специальные учебные заведения, профтехучилища, внешкольные учебные заведения;

– Ф4.2–высшие учебные заведения, учреждения повышения квалификации;

– Ф4.3–учреждения органов управления, проектно-конструкторские организации, информационно-издательские организации, научно-исследовательские организации, банки, офисы.

К пятому классу относятся производственные и складские помещения:

– Ф5.1–производственные и лабораторные помещения;

– Ф5.2–складские здания и помещения, стоянки автомобилей без технического обслуживания, книгохранилища и архивы;

– Ф5.3–сельскохозяйственные здания.

Производственные и складские помещения, а также лаборатории и мастерские в зданиях классов Ф1, Ф2, ФЗ, Ф4 относятся к классу Ф5.

Согласно ГОСТ 30244–94 «Материалы строительные. Методы испытаний на горючесть» строительные материалы, в зависимости от значения параметров горючести, подразделяются на горючие (Г) и негорючие (НГ). Определение горючести строительных материалов проводят экспериментально.

Для отделочных материалов кроме характеристики горючести вводится понятие величины критической поверхностной плотности теплового потока (КППТП), при которой возникает устойчивое пламенное горение материала (ГОСТ 30402–96). В зависимости от значения КППТП все материалы подразделяются на три группы воспламеняемости:

– Bl –КППТП равна или больше 35 кВт на м2;

– В2 –больше 20, но меньше 35 кВт на м2;

– ВЗ –меньше 20кВт на м2.

- внутренняя планировка и застройка территории объекта (внутренняя планировка и плотность застройки территории объекта оказывают значительное влияние на вероятность распространения пожара, на разрушения, которые может вызвать ударная волна, образующаяся при взрыве, на размеры очага поражения при выбросе в окружающую среду токсичных веществ и др. В качестве примера в табл. 2 показана вероятность распространения пожара в зависимости от расстояния между зданиями. Необходимо учитывать и характер застройки, окружающей объект. Так, наличие вблизи данного объекта опасных предприятий, в частности химических, может в значительной степени усугубить последствия возникшей на объекте ЧС);

Таблица 2.

Расстояние между зданиями, м                    
Вероятность распространения пожара, %                    

- наличия на объекте средств локализации и тушения пожаров и возможностей их своевременного применения.

По масштабам и интенсивности пожары можно подразделить на:

– отдельный пожар, возникающий в отдельном здании (сооружении) или в небольшой изолированной группе зданий;

– сплошной пожар, характеризующийся одновременным интенсивным горением преобладающего числа зданий и сооружений на определенном участке застройки (более 50 %);

– огневой шторм, особая форма распространяющегося сплошного пожара, образующаяся в условиях восходящего потока нагретых продуктов сгорания и быстрого поступления в сторону центра огневого шторма значительного количества свежего воздуха (ветер со скоростью 50 км/ч);

– массовый пожар, образующийся при наличии в местности совокупности отдельных и сплошных пожаров.

На скорость распространения огня огромное влияние оказывают три фактора - плотность застройки, степень огнестойкости здания и скорость ветра.

( Средства локализации и тушения пожаров. К основным видам техники, предназначенной для защиты различных объектов от пожаров, относятся средства сигнализации и пожаротушения.

В практике тушения пожаров наибольшее распространение получили следующие принципы прекращения горения:

- изоляция очага горения от воздуха или поступления горючего (изоляция);

- снижение концентрации кислорода в воздухе до значения, при котором не может происходить горение (О2 < 12 – 14%) (разбавление);

- охлаждение очага горения до температуры ниже t воспламенения (самовоспламенения, вспышки) – (охлаждение);

- торможение скорости химической реакции окисления (ингибирование);

- механический срыв пламени в результате воздействия на него струи газа или жидкости (механический срыв);

- создание условий огнепреграждения, при которых пламя распространяется через узкие каналы.

Для достижения вышеуказанных эффектов в настоящее время в качестве средств тушения используют:

– воду, которая подается в очаг пожара сплошной или распыленной струёй;

– различные виды пен (химическая или воздушно-механическая), представляющих собой пузырьки воздуха или углекислого газа, окруженные тонкой пленкой воды;

– инертные газовые разбавители, в качестве которых могут использоваться: углекислый газ, азот, аргон, водяной пар, дымовые газы и т. д.;

– гомогенные ингибиторы – низкокипящие галогеноуглеводороды;

– гетерогенные ингибиторы – огнетушащие порошки;

– комбинированные составы.

Вода является наиболее широко применяемым средством тушения.

Обеспечение предприятий и регионов необходимым объемом воды для пожаротушения обычно производится из общей (городской) сети водопровода или из пожарных водоемов и емкостей. Требования к системам противопожарного водоснабжения изложены в СНиП 2.04.02–84 «Водоснабжение. Наружные сети и сооружения» и в СНиП 2.04.01–85 «Внутренний водопровод и канализация зданий».

- характеристика технологического процесса (используемые вещества, энергетические характеристики оборудования, его пожаро- и взрывоопасность и др.). (Технологический процесс изучается с учетом специфики производства на время ЧС (изменение технологии, частичное прекращение производства, переключение на производство новой продукции и т. п.). Оценивается минимум и возможность замены энергоносителей; возможность автономной работы отдельных станков, установок и цехов объекта; запасы и места расположения СДЯВ, ЛВЖ и горючих веществ; способы безаварийной остановки производства в условиях ЧС. Особое внимание уделяется изучению систем газоснабжения, поскольку разрушение этих систем может привести к появлению вторичных поражающих факторов). Для повышения устойчивости объекта в чрезвычайной ситуации необходимо рассмотреть возможность изменения технологий, снижения мощности производства, а также его переключения на производство другой продукции. Необходимо разработать способ быстрой и безаварийной остановки производства в ЧС;

- надежность системы управления;

- надежность системы обеспечения всем необходимым для производства продукции (сырьем, электроэнергией, водой, газом, теплом, топливом, комплектующими изделиями);

- наличие надежной системы защиты рабочих и служащих от поражающих факторов в ЧС и ряд др.

Рассмотрим пути повышения устойчивости функционирования наиболее важных видов технических систем и объектов.

1) Системы водоснабжения представляют собой крупный комплекс зданий и сооружений, удаленных друг от друга на значительные расстояния. При ЧС, как правило, все элементы этой системы не могут быть выведены из строя одновременно.

При проектировании системы водоснабжения необходимо предусмотреть меры их защиты в ЧС:

- ответственные элементы системы водоснабжения целесообразно размешать ниже поверхности земли, что повышает их устойчивость;

- для города надо иметь два-три источника водоснабжения;

- для промышленных магистралей (промышленного водоснабжения) — не менее двух-трех вводов от городских магистралей;

- предусмотреть возможность ремонта данных систем без их остановки и отключения водоснабжения других потребителей.

2) Весьма важной является система водоотведения загрязненных (сточных) вод (система канализации). В результате ее разрушения создаются условия для развития болезней и эпидемий. Скопление сточных вод на территории объекта затрудняет проведение аварийно-спасательных и восстановительных работ. Повышение устойчивости системы канализации достигается созданием резервной сети труб, по которым может отводиться загрязненная вода при аварии основной сети. Должна быть разработана схема аварийного выпуска сточных вод непосредственно в водоемы. Насосы, используемые для перекачки загрязненной воды, должны обеспечиватся надежными источниками электропитания.

3) В ЧС электрические сооружения и сети могут получить различные разрушения и повреждения. Их наиболее уязвимыми частями являются наземные сооружения (электростанции, подстанции, трансформаторные станции), а также воздушные линии электропередач. В современных крупных энергосистемах применяются различные автоматические устройства, способные практически мгновенно отключить поврежденные участки, сохраняя работоспособность системы в целом.

Д ля повышения устойчивости системы электроснабжения

- в первую очередь целесообразно заменить воздушные линии электропередач на кабельные (подземные) сети;

- использовать резервные сети для запитки потребителей;

- предусмотреть автономные резервные источники электропитания объекта (передвижные электрогенераторы).

4) Весьма важно обеспечить устойчивость системы газоснабжения, так как при ее разрушении или повреждении возможны возникновение пожаров и взрывов, а также выход газа в окру­жающую среду, что значительно затрудняет проведение аварийно-спасательных и восстановительных работ.

Основные мероприятия по увеличению устойчивости систем газоснабжения следующие:

- сооружение подземных обводных газопроводов (бассейнов), обеспечивающих подачу газа в аварийных условиях;

- использование устройств, обеспечивающих возможность работы оборудования при пониженном давлении в газопроводах;

- создание на предприятиях аварийного запаса альтернативного вида топлива (угля, мазута);

- осуществление газоснабжения объекта от нескольких источников (газопроводов);

- создание подземных хранилищ газа высокого давления;

- использование на закольцованных системах газоснабжения отключающих устройств, установленных на распределительной сети.

5) В результате ЧС может быть серьезно повреждена система теплоснабжения населенного пункта или предприятия, что создает серьезные трудности для их функционирования, особенно в холодный период года. Так, разрушение трубопроводов с горячей водой или паром может повлечь их затопление и затруднить локализацию и ликвидацию аварии. Наиболее уязвимые элементы систем теплоснабжения - теплоэлектроцентрали и районные котельные.

Основным способом повышения устойчивости внутреннего оборудования тепловых сетей является их дублирование. Необходимо также обеспечить возможность отключения поврежденных участков теплосетей без нарушения ритма теплоснабжения потребителей, а также создать системы резервного теплоснабжения.

6) В результате воздействия ударной волны, возникающей при взрывах различного происхождения (при аварии газопроводов, при военных действиях), могут серьезно пострадать подземные коммуникации, включая подземные переходы и транспортные сооружения (эстакады, путепроводы, мосты и др.). Наибольшее разрушение различных мостовых сооружений вызывает боковая ударная волна, направленная перпендикулярно пролетному строению моста. Весьма опасным для этих сооружений является воздействие ударных волн, отраженных от поверхности воды (реки, водоема). Воздействие ударной волны на подземные сооружения (коллекторы) может вызвать их повреждение. Особенно опасно в этом случае разрушение трубопроводов с горячей водой или паром, а также газопроводов.

Основным средством повышения устойчивости рассмотренных сооружений от воздействия ударной волны является повышение прочности и жесткости конструкций.

Особое внимание следует удалять устойчивости складов и хранилищ ядовитых, пожаро- и взрывоопасных веществ в условиях ЧС. Это достигается проведением сле­дующих мероприятий: переводом указанных материалов на хранение из наземных складов в подземные, хранением минимального количества ядовитых, пожаро- и взрывоопасных веществ, а также безостановочным использованием этих веществ при поступлении на объект минуя склад («работа с колес»).

7) Для повышения устойчивости работы объектов в ЧС необходимо уделять значительное внимание защите рабочих и служащих. Для этого на объектах строятся убежища и укрытия, предназначенные для защиты персонала, создается и поддерживается в постоянной готовности система оповещения рабочих и служащих объекта, а также проживающего вблизи объекта населенияо возникновении ЧС.Персонал, обслуживающий объект, должен знать о режиме его работы в случае возникновения ЧС, а также быть обученным выполнению конкретных работ по ликвидации очагов поражения.

Контрольные вопросы

1. Что понимают под устойчивостью работы промышленного объекта?

2. Что понимают под устойчивостью технической системы?

3. Этапы исследования устойчивости конкретного объекта и уязвимость его элементов.

4. Какие факторы оказывают влияние на устойчивость работы объекта в условиях ЧС?

5. Как обеспечивается устойчивость работы объектов народного хозяйства в чрезвычайных ситуациях?

6. Что надо сделать для повышения устойчивости функционирования наиболее важных видов технических систем и объектов народного хозяйства в чрезвычайных ситуациях?


Дата публикования: 2015-07-22; Прочитано: 5239 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.018 с)...