Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Статические и динамические



Прямые и косвенныеизмерения различают в зависимости от способа получения результата измерений.

Прямые измерения отличаются той особенностью, что искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением

Q = X,

где Q – измеряемая величина,

X – результат измерения.

Косвенныеизмерения – измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения

Q = F (X, Y, Z,..),

где X, Y, Z,... – результаты прямых измерений.

Принципиальной особенностью косвенных измерений является необходимость обработки (преобразования) результатов вне прибора (на бумаге, с помощью калькулятора или компьютера), в противоположность прямым измерениям, при которых прибор выдает готовый результат. Классическими примерами косвенных измерений можно считать нахождение значения угла треугольника по измеренным длинам сторон, определение площади треугольника или другой геометрической фигуры и т.п.

Прямые и косвенные измерения характеризуют измерения некоторой конкретной одиночной физической величины. Измерение любого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин.

При совокупных измерениях осуществляется измерение нескольких одноименных величин, например, длин L1, L2, L3 и т.д. Подобные измерения выполняют на специальных устройствах для одновременного измерения ряда геометрических параметров валов.

Совместные измерения подразумевают измерение нескольких неодноименных величин (X, Y, Z и т.д.). Примерами таких измерений могут быть комплексные измерения электрических, силовых и термодинамических параметров электродвигателя или одновременные измерения длин и температур для нахождения температурного коэффициента линейного расширения.

Для отображения результатов, получаемых при измерениях, могут быть использованы разные шкалы, в том числе градуированные в единицах измеряемой физической величины, либо в некоторых относительных единицах, включая неименованные. В соответствии с этим принято различать абсолютные и относительныеизмерения.

По числу повторных измерений одной и той же величины различают однократные и многократныеизмерения, причем многократные измерения проводят или для страховки от грубых погрешностей или для математической обработки результатов (расчет средних значений, статистическая обработка и др.). В зависимости от поставленной цели число повторных измерений может колебаться в широких пределах (от двух измерений до нескольких десятков и даже сотен).

В зависимости от планируемой точности измерения делят на технические и метрологические, а от реализованной точности и от степени рассеяния результатов при многократном повторении измерений одной и той же величины – на равноточные и неравноточные, а также на равнорассеянные и неравнорассеянные.

Технические измерения выполняют с заранее установленной точностью, иными словами,при таких измерениях погрешность не должна превышать заранее заданного значения.

Метрологические измерения выполняют с максимально достижимой точностью, добиваясь минимальной (при имеющихся ограничениях) погрешности измерения.

В тех случаях, когда точность результата измерений не имеет принципиального значения, а цель измерений состоит в приблизительной оценке неизвестной физической величины прибегают к ориентировочным измерениям, погрешность которых может колебаться в достаточно широких пределах, поскольку любая реализуемая в процессе измерений погрешность принимается за допустимую.

Общность метрологического подхода ко всем этим видам измерений состоит в том, что при любых измерениях определяют значения реализуемых погрешностей, без чего невозможна достоверная оценка результатов.

Оценка равноточности и неравноточности, а также равнорассеянности и неравнорассеянности результатов измерений зависит от выбранных значений предельных мер расхождения точности или оценок рассеяния. Допустимые расхождения оценок устанавливают в зависимости от задачи измерения.

Равноточными называют серии измерений для которых оценки погрешностей можно считать практически одинаковыми, а к неравноточным относят измерения с различающимися погрешностями. Измерения считают равнорассеянными или неравнорассеянными в зависимости от совпадения или различия оценок случайных составляющих погрешностей измерений сравниваемых серий.

Статические и динамические измерения наиболее логично рассматривать в зависимости от режима получения средством измерения входного сигнала измерительной информации. При измерении в статическом (квазистатическом) режиме скорость изменения входного сигнала несоизмеримо ниже скорости его преобразования в измерительной цепи и результаты фиксируются без динамических искажений.

При измерении в динамическом режиме появляются дополнительные динамические погрешности, связанные со слишком быстрым изменением либо самой измеряемой физической величины, либо входного сигнала измерительной информации, поступающего от постоянной измеряемой величины. Например, в подшипниковой промышленности при измерении диаметров тел качения (постоянных физических величин) с использованием контрольно-сортировочных автоматов скорость изменения измерительной информации на входе может оказаться соизмеримой со скоростью измерительных преобразований в цепи прибора.

Различают два основных метода измерений: метод непосредственной оценки и метод сравнения с мерой.

При использовании метода непосредственной оценки значение измеряемой физической величины определяют непосредственно по отсчетному устройству прибора прямого действия. Суть метода непосредственной оценки как и любого измерения состоит в сравнении измеряемой величины с мерой, принятой за единицу, но в этом случае мера "заложена" в измерительный прибор опосредовано. Прибор осуществляет преобразование входного сигнала измерительной информации, соответствующего всей измеряемой величине, после чего и происходит оценка ее значения.

Метод сравнения с мерой характеризуется тем, что измеряемая величина сравнивается с известной аналогичной величиной, которая воспроизводится мерой.

Принципиальные различия между двумя основными методами измерений заключаются в том, что метод непосредственной оценки реализуется с помощью приборов без применения мер в явном виде, а метод сравнения с мерой связан с обязательным использованием овеществленной меры. Меры воспроизводят с выбранной точностью физическую величину определенного (близкого к измеряемой) размера. Примерами мер являются гири, концевые меры длины или угла, резисторы и т.д.

Метод сравнения с мерой реализуется в нескольких разновидностях, среди которых различают:

- дифференциальный и нулевой методы,

- метод совпадений,





Дата публикования: 2015-07-22; Прочитано: 1492 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...