Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Биогеохимические функции



1. Энергетическая функция - связана с запасанием солнечной энергии, ее передачей по цепям питания, рассеиванием. За счет накопленной солнечной энергии протекают все жизненные явления на Земле.

2. Газовая функция - способность изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом.

3. Окислительно-восстановительная функция - связана с интенсификацией процессов окисления (благодаря выделению кислорода) и восстановления (H2S4CH4), протекающих под действием живого вещества.

4. Концентрационная функция - способность организмов извлекать из окружающей среды и накапливать в своем теле как биогенные, так и рассеянные элементы (результат действия такой функции - залежи полезных ископаемых).

5. Деструктивная функция - разрушение организмами и продуктами их жизнедеятельности остатков органического вещества и косных веществ.

6. Транспортная функция - перенос вещества и энергии в результате активного движения живых организмов.

7. Средообразующая функция - преобразование физико-химических параметров среды в результате процессов жизнедеятельности. Эта функция - интегративная, то есть является результатом совместного выполнения других функций.

8. Рассеивающая функция - противоположна концентрационной функции и проявляется через трофическую и транспортную деятельность организмов.

9. Информационная функция - живые организмы и их сообщества накапливают определенную информацию, закрепляют ее в наследственных структурах, передают последующим поколениям.


13. Биогеохимические круговороты веществ: геологический и биологический круговороты. Резервный и обменные фонды. Два основных типа биогеохимических циклов. Биогеохимические круговороты азота, углерода и фосфора (Тыгдымаева).

Круговорот веществ на Земле- это повторяющиеся процессы превращения и перемещения вещества в природе, имеющие более или менее выраженный циклический характер. Именно это является основным условием устойчивости биосферы.

Различают два основных круговорота: большой (геологический) и малый (биологический).

Большой круговорот, обусловлен взаимодействием солнечной энергии с глубинной энергией Земли и осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли. Осадочные горные породы, образованные за счет выветривания магматических пород, в подвижных зонах земной коры вновь погружаются в зону высоких температур и давлений. Там они переплавляются и образуют магму — источник новых магматических пород. После поднятия этих пород на земную поверхность и действия процессов выветривания вновь происходит трансформация их в новые осадочные породы. Символом круговорота веществ является спираль, а не круг. Это означает, что новый цикл круговорота не повторяет в точности старый, а вносит что-то новое, что со временем приводит к весьма значительным изменениям.

Большой круговорот — это и круговорот воды между сушей и океаном через атмосферу. Влага, испарившаяся с поверхности Мирового океана переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока. Круговорот воды происходит и по более простой схеме: испарение влаги с поверхности океана — конденсация водяного пара — выпадение осадков на эту же водную поверхность океана. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете.

Малый круговорот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов, которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества. Выделяют 2 вида малого круговорота.

1. Биологический – перенос вещества и энергии осуществляется преимущественно посредством трофических связей (пищевых цепей). Он предполагает замкнутый цикл веществ, многократно используемых трофической цепью и имеет место в водных экосистемах, особенно в планктоне с его активным метаболизмом. Но в наземных экосистемах он невозможен, за исключением дождевых тропических лесов, где может быть обеспечена передача питательных веществ от растения к растению.

В масштабах биосферы такой круговорот невозможен. Здесь действует другой круговорот.

2. Биогеохимический – обмен микро- и макроэлементов и простых неорганических веществ (СО2, Н2О) с веществом атмосферы, гидросферы и литосферы.При рассмотрении биогеохимического круговорота любого вещества необходимо выделять две части запаса этого вещества:

1) обменный фонд - это часть элемента, которая находится в круговороте, он составляет незначительную часть общего объема элемента;

2) резервный фонд - это часть элемента, которая не циркулирует и пока что не будет циркулировать, однако может быть при необходимости включена в круговорот. Резервные фонды отличаются по степени подвижности и легкости вовлечения в круговорот. Различают газообразный резервный фонд, который находится в атмосфере и является наиболее подвижным и доступным (N-азот, О-кислород, С-углерод), и осадочный резервный фонд, который находится в литосфере или гидросфере и труднее включается в обменный фонд по двум причинам:

1) он предварительно должен быть переведен в водорастворимое состояние, чтобы живые организмы могли его ассимилировать;

2) он доступен не везде одинаково, потому что может находиться под землей на разной глубине.

Для биосферы в целом можно выделить два основных типа биогеохимических циклов:

• круговорот газообразных веществ, с резервным фондом в атмосфере или гидросфере;

• осадочный цикл с резервным фондом в земной коре.

Такое разделение биогеохимических циклов основано на том, что некоторые круговороты, например те, в которых участвуют углерод, азот и кислород, из-за наличия крупных атмосферных или океанических фондов довольно быстро компенсируют нарушения. Так, накопленный в каком-либо месте избыток СО2 обычно быстро рассеивается воздушными потоками, а увеличение его концентрации в атмосфере способствует большему потреблению растениями и превращению в карбонаты в море.

Осадочный цикл, в котором принимаю участие такие химические элементы, как фосфор и железо, в меньшей степени способен к саморегуляции и поэтому легче нарушается. Это связано с тем, что основная часть химических веществ сосредоточена в относительно малоподвижном и малоактивном резервном фонде земной коры. Если изъятие химических элементов в этих циклах происходит быстрее, чем возврат, какая-то их часть может на длительное время выбывать из круговорота. Механизмы возвращения химических элементов в круговорот основаны главным образом на биологических процессах.

Круговорот углерода

Углерод составляет приблизительно 0,027% массы земной коры. В несвязанном состоянии он встречается в виде алмазов и графита. Каменный уголь содержит до 90% углерода. В связанном состоянии углерод входит также в разные горючие ископаемые, в карбонатные минералы, например кальцит и доломит, а также в состав всех биологических веществ.Из углерода в биосфере создаются миллионы органических соединений. Углекислота из атмосферы в процессе фотосинтеза, осуществляемого зелеными растениями, ассимилируется и превращается в разнообразные органические соединения растений. Растения частично поедаются животными В конечном счете, органическая масса в результате дыхания, гниения и горения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, которые, в свою очередь, дают начало многим другим соединениям – каменным углям, нефти. В процессах распада органических веществ, их минерализации, огромную роль играют бактерии (например, гнилостные), а также многие грибы (например, плесневые). Огромное количество углекислоты законсервировано в виде ископаемых известняков и других пород.

Между углекислым газом атмосферы и водой океана существует подвижное равновесие. Организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. Атмосфера пополняется углекислым газом благодаря процессам разложения органических веществ, карбонатов и т.д. Особенно мощным источником являются вулканы, газы которых состоят главным образом из паров воды и углекислого газа.

Круговорот азота

Охватывает все области биосферы. Запасы азота в атмосфере неисчерпаемы (78%), но поглощение его растениями ограниченно, т.к. они усваивают азот только в форме соединений с углеродом и кислородом. Усваивать азот из воздуха могут азотофиксирующие клубеньковые бактерии, являющиеся симбионтами бобовых культур и обитающие в клубеньках на корнях последних.

Редуценты (деструкторы) – почвенные бактерии – постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды, загрязняя их. Азот в форме нитратов и нитритов может усваиваться растениями и передаваться по пищевым цепям.Азот возвращается в атмосферу вместе с газами, выделяемыми при гниении.Роль бактерий в цикле азота такова, что по мнению некоторых ученых, если будет уничтожено 12 видов бактерий, участвующих в превращениях азота, жизнь на Земле прекратится.

Круговорот фосфора

Фосфор содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот он может попасть в случае подъема этих пород из глубины земной коры на поверхность земли в зону выветривания. Эрозионными процессами он выносится в море в виде апатита.

Общий круговорот фосфора можно подразделить на две часть: водную и наземную.

В водных экосистемах он усваивается планктоном и передается по трофической цепи до консументов 3-го порядка – морских птиц. Их экскременты (гуано) вновь попадают в море и вступают в круговорот или накапливаются на берегу и затем смываются в море с осадками. Из отмирающих животных фосфор частично попадает по трофическим цепям в круговорот, а частично скелеты достигают больших глубин и заключенный в них фосфор снова попадает в осадочные породы.

В наземных экосистемах фосфор извлекается из почвы растениями и далее распространяется по трофической цепи. В почву он возвращается или с экскрементами или после отмирания животных. Теряется фосфор из почв в результате водной эрозии. Повышенное содержание фосфора в водных путях вызывает бурное увеличение биомассы водных растений, «цветение» водоемов, их эвтрофикацию. Большая часть фосфора уносится в море и там осаждается, выводясь из круговорота на долгие годы.


13 Биогеохимические круговороты веществ: геологический и биологический круговороты. Резервный и обменные фонды. Два основных типа биогеохимических циклов. Биогеохимические круговороты азота, углерода и фосфора (Колбышева).

Биологический круговорот. В основе функционирования лежит круговорот вещества, который осуществляется при помощи всех живых организмов. Непрерывность жизни обеспечивается процессами распада деструкции. С участием деструкторов осуществляется саморегуляция биосферы. И по подсчетам авторов суммарная первичная продукция за год сухого органического вещества составляет 232.5 млрд тонн, в океане 60 млрд тонн, на континенте 172.5 млрд тонн. По данным Рабиновича (1951 г.) весь кислород в атмосфере оборачивается через живые организмы приблизительно 2 тыс лет. Углекислый газ за 300 лет, вся вода разлагается и восстанавливается за 2 млн лет.

Геологический круговорот.(малый) Совершается в пределах биосферы. Сущность его в образовании живого вещества из неорганических веществ в процессе фотосинтеза и в превращении органического вещества при разложении вновь неорганического вещества. Главным источником энергии является солнечная радиация, которая порождает фотосинтез. Эта энергия распределяется неравномерно по поверхности земного шара.

Геологический круговорот. (большой) обусловлен взаимодействием солнечной энергии с глубинной энергией Земли и осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли. Осадочные горные породы, образованные за счет выветривания магматический пород, в подвижных зонах земной коры вновь погружаются в зону высоких температур и давления. Там они переплавляются и образуют магму. После поднятия магматических пород на земную поверхность и действия процессов выветривания вновь происходит трансформация их в новые осадочные породы.

В каждом круговороте различают два фонда: резервный, включающий большую массу движущихся веществ, в основном небиологических компонентов, и подвижный, или обменный, фонд – по характеру более активный, но менее продолжительный, отличительной особенностью которого является быстрый обмен между организмами и их непосредственным окружением.

Биогеохимические циклы можно подразделять на два типа: 1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан), 2) осадочный цикл с резервным фондом в земной коре.

Круговорот углерода начинается с фиксации атмосферного диоксида углерода в процессе фотосинтеза. Часть образовавшихся при фотосинтезе углеводов используют сами растения для получения энергии, часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаются, углерод их тканей окисляется и возвращается в атмосферу. Аналогичный процесс происходит и в океане.

Круговорот азота также охватывает все области биосферы. Хотя его запасы в атмосфере практически неисчерпаемы, высшие растения могут использовать азот только после соединения его с водородом или кислородом. Исключительно важную роль в этом процессе играют азотфиксирующие бактерии. При распаде белков этих микроорганизмов азот снова возвращается в атмосферу.


14 Современные концепции биосферы: биогеохимическая, термодинамическая, биокибернетическая, математическая, концепция устойчивости. Глобальные экологические проблемы как результат нарушения сложившейся организованности биосферы (Колбышева).

Биогеохимическая;1. Биогенная миграция атомов химических элементов всегда стремится к своему максимальному проявлению. Этот принцип связан со способностью живого вещества неограниченно размножаться при оптимальных условиях. 2. Эволюция в ходе геологического времени, приводящая к созданию форм жизни устойчивых к биосфере идет в направлении увеличивающем биогенную миграцию атомов в биосфере (при эволюции вида выживают те организмы, которые своей жизнью увеличивают биогенную геохимическую энергию). По вернадскому этот принцип в ходе эволюции преимущественно те организмы, которые научились усваивать новые формы энергии или же более полно использовать энергию накопленную в других организмах. 3. В течении всего геологического времени, начиная с клиптозоя, заселение планеты должно было быть максимально возможным для всего живого вещества, которое тогда существовало. Этот принцип повторяет первый и второй принцип.

Кибернетическое поведение экосистем определяется тем, что они обладают развитыми информационными сетями, включающими потоки физических и химических сигналов, которые связывают все части экосистемы и управляют ею как единым целым. Отличие экосистем от кибернетических устройств, созданных человеком, заключается в том, что управляющие функции экосистемы сосредоточены внутри нее и диффузны. В кибернетических же системах, созданных человеком, управляющие функции направлены вовне и специализированы.

Концепция устойчивого развитияподразумевает неограниченно долгое существование и развитие человечества.

Создание стратегии устойчивого развития является чрезвычайно трудоёмкой задачей, так как для этого требуется выработка новых научных и мировоззренческих подходов и координальное изменение традиционных общечеловеческих взглядов, ценностей и стереотипов мышления.

Построение устойчивого развития это создание баланса между двумя противоположными точками зрений, (двумя подходами) – антропоцентрической и биоцентрической. В основе антропоцентрического подхода лежат интересы человека, как главной ценности, а в основе биоцентрического подхода лежат интересы природы, как основной ценности. Однако, по своей сути устойчивое развитие является олицетворением коэволюции человека и природы, так как «стратегия устойчивого развития направлена на достижение гармонии между людьми и между обществом и природой» Одним из центральных вопросов построения устойчивого развития общества является организация хозяйственной деятельности человека в рамках экологической ёмкости биосферы. Биосфера должна рассматриваться как фундаментальная основа жизни, а не как источник ресурсов, так как без биосферы функционирование социально-экономической системы невозможно.

Концепция устойчивого развития содержит в себе три взаимосвязанных компоненты, три составляющие: Экологическую, Социальную, Экономическую.

концепции устойчивого развития.

Эта концепция была принята на конференции ООН по окружающей среде и развитию (1992 год, Рио-де-Жанейро), где была отмечена невозможность прогресса развивающихся стран по пути, который прошли развитые страны. Было признано, что эта модель развития завершится гибелью человечества. Поэтому была провозглашена необходимость перехода мирового сообщества на путь устойчивого развития, то есть развития общества на базе экологически целесообразного природоиспользования, обеспечивающего высокое качество жизни для людей целого ряда поколений.

Устойчивое развитие было выдвинуто как основная задача человечества на конец XX - начало XXI века. Эта модель развития предполагает:

1. Снижение материале- и энергоемкости производства, максимальное сокращение отходов, снижение оборота токсичных веществ и расширение использования возобновляемых ресурсов, включая источники энергии.

2. Переход к ценообразованию, учитывающему экологические критерии (цену ущерба окружающей среде) и стимулирующему использованию новых, экономически безопасных ресурсе- и энергосберегающих технологий в сочетании с системой налогов и штрафов.

3. Содействие устойчивому ведению сельского хозяйства и развитию сельских районов через повышение продуктивности сельскохозяйственных культур, улучшение питательных свойств растительной и животной продукции, использование комплексных методов борьбы с вредителями сельского хозяйства и т.д.

4. Передача индустриально развитыми странами передовых технологий развивающимся странам, в частности, новых технологий, созданных на основе генетических материалов, полученных из развивающихся стран.

5. Создание международных институтов, способных определить единую глобальную линию устойчивого развития, устанавливать единые для всех стран экологические стандарты, аккумулировать и перераспределять ресурсы в интересах всего сообщества, контролировать соблюдение всеми государствами единых правил экологического поведения.

Изучение развития общества началось с моделирования биосферных (экологических) процессов Земли. Основоположником теории о биосфере считают В.И. Вернадского [3]. Согласно его теории живое вещество планеты связано с косным веществом посредством биохимической энергии, которую он также называл биогенной миграцией атомов. Эта энергия обеспечивает существование всех живых организмов, запасы которой пополняются за счет солнечной энергии. Модели биосферы строились на основе описания процесса "перетекания" биохимической энергии из одной системы в другую.

Например, растения, поглощая солнечную энергию, впитываю минеральные вещества и влагу из почты, становятся нижним трофическим уровнем в обмене биомассой (живого вещества). Растительноядные животные поглощают растения, пополняя, таким образом, свой запас биомассы. Они образуют следующий трофический уровень. Хищные животные поедают растительноядных, становясь следующими на лестнице трофических уровней. В реальной жизни трофических уровней намного больше, и не всегда их можно четко разделить. Но этот примитивный пример демонстрирует основной принцип построения моделей биосферы. Математическая модель такого процесса обычно описывается системой дифференциальных уравнений. Каждое уравнение имеет общий вид:

здесь B - величина биомассы некоторого уровня, dB/dt - скорость изменения биомассы, S+ - величина потока, "втекающей" энергии, S- - величина потока, "вытекающей" энергии. Эти потоки зависят от объема биомассы других уровней.

Но для описания биосферной системы необходимо описать не только изменение запаса биомассы на всех уровнях, но и изменение состояния атмосферы, почвы и круговорота воды. Следовательно, для того чтобы описать конкретную модель, необходимо описать все потоки и все изменения параметров окружающей среды. После записи всей системы, ее необходимо каким-то образом решить. Но выписать аналитическое решение системы даже двух нелинейных дифференциальных уравнений практически невозможно, кроме некоторых тривиальных случаев. А что говорить о системе из пяти, десяти или двадцати дифференциальных уравнений. Для описания биосферы авторы монографии "Математическое моделирование глобальных биосферных процессов" [17] использовали систему из двадцати четырёх дифференциальных уравнений. Решение такой системы можно найти только при использовании компьютера. Поэтому результаты таких экспериментов не были получены в то время, когда были написаны сами системы (70-е года двадцатого века). Но сейчас это стало возможным при появлении современных компьютеров. Отчасти, это направление математического моделирования биосферных процессов возникло как необходимость обратить внимание общественности на глобальные изменения экологической обстановки.

Современные проблемы охраны природы

Исходными причинами появившихся в конце XX в. глобальных экологических проблем были демографический взрыв и одновременная научно-техническая революция.

Численность населения Земли была равной 2,5 млрд человек в 1950 г., удвоилась в 1984 г. и достигнет 6,1 млрд в 2000 г. Географически рост населения Земли неравномерен. В России с 1993 г. численность населения снижается, но растет в Китае, странах юга Азии, во всей Африке и Латинской Америке. Соответственно, за полвека в 2,5–3 раза возросли пространства, отнятые у природы посевными площадями, жилыми и общественными постройками, железными и автомобильными дорогами, аэропортами и морскими пристанями, огородами и свалками.

В то же время научно-техническая революция дала человечеству обладание атомной энергией, которая, кроме блага, привела к радиоактивному загрязнению обширных территорий. Возникла реактивная скоростная авиация, разрушающая озоновый слой атмосферы. В десятки раз увеличилось количество автомашин, загрязняющих выхлопными газами атмосферу городов. В сельском хозяйстве кроме удобрений широко стали применяться различные яды — пестициды, смыв которых загрязнил поверхностный слой воды всего Мирового океана.

Все это привело к возникновению многих крупных экологических проблем. Глобальные экологические проблемы есть объективный результат взаимодействия нашей цивилизации и окружающей среды в эпоху промышленного развития. Началом этой эпохи принято считать 1860г., примерно в это время в результате бурного развития евроамериканского капитализма произошел выход тогдашней промышленности на новый уровень. Глобальные экологические проблемы делят на несколько групп, тесно связанных друг с другом:

демографическая проблема (негативные последствия роста численности населения в 20-м в.);

энергетическая проблема (дефицит энергии порождает поиск новых ее источников и связанным с их добычей и использованием загрязнением);

пищевая проблема (необходимость достижения полноценного уровня питания всякого человека ставит вопросы в области сельского хозяйства и использования удобрений);

проблема сохранения природных ресурсов (сырьевые и минеральные ресурсы истощаются еще с бронзового века, актуально сохранение генофонда человечества и биоразнообразия, пресная вода и кислород атмосферы ограничены);

проблема защиты окружающей среды и человека от действия вредных веществ (известны печальные факты массового выбрасывания китов на побережье, ртутных, нефтяных и т.п. катастроф и ими вызванных отравлений).

В последней четверти XX в. началось резкое потепление глобального климата, которое в бореальных областях сказывается уменьшением количества морозных зим. Средняя температура приземного слоя воздуха за последние 25 лет возросла на 0,7°С. Температура подледной воды в районе Северного полюса возросла почти на два градуса, вследствие чего началось подтаивание льда снизу.

Не исключено, что это потепление частично имеет естественный природный характер. Однако скорость потепления заставляет признать роль антропогенного фактора в этом явлении. Сейчас человечество сжигает ежегодно 4,5 млрд т угля, 3,2 млрд т нефти и нефтепродуктов, а также природный газ, торф, горючие сланцы и дрова. Все это превращается в углекислый газ, содержание которого в атмосфере возросло с 0,031% в 1956 г. до 0,035% в 1996 г (9. С. 99). и продолжает расти. Кроме того, резко увеличились выбросы в атмосферу другого парникового газа — метана.

Сейчас большинство климатологов мира признает роль антропогенного фактора в потеплении климата. За последние 10-15 лет проведено много исследований и совещаний, которые показали, что подъем уровня Мирового океана действительно происходит, со скоростью 0,6 мм в год, или 6 см за столетие. В то же время вертикальные поднятия или опускания береговых линий достигают 20 мм в год.

В настоящее время главными экологическими проблемами, возникшими под влиянием антропогенной деятельности, стали: нарушение озонового слоя, обезлесивание и опустынивание территорий, загрязнение атмосферы и гидросферы, выпадение кислотных дождей, уменьшение биоразнообразия. В связи с этим необходимы самые широкие исследования и глубокий анализ изменений в области глобальной экологии, что могло бы помочь в принятии кардинальных решений на самом высоком уровне с целью сокращения ущерба природным условиям и обеспечения благоприятной среды обитания.

Термодинамической концепции нет, не смогла найти. Но еще постараюсь


15 Происхождение и эволюция биосферы. Ноосфера – эволюционная стадия биосферы (Колбышева).

Биосфера- «сфера жизни», «область жизни».

В 1875 году этот термин ввел Зюсс (австралийский ученый).

Вернандский создал учение о биосфере. Под биосферой надо понимать совокупность всего живого. Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».

Французский учёный-естествоиспытатель Жан Батист Ламарк в начале XIX в. впервые предложил по сути дела концепцию биосферы, ещё не введя даже самого термина. Термин «биосфера» был предложен австрийским геологом и палеонтологом Эдуардом Зюссом в 1875 году.

Целостное учение о биосфере создал биогеохимик и философ В. И. Вернадский. Он впервые отвёл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом.

Особое место в трудах В. И. Вернадского занимает концепция эволюции биосферы. Основная идея заключается в том, что биосфера формировалась под воздействием живых организмов. Начиная же с момента возникновения жизни происходит постоянный процесс эволюции живых существ: возникают многочисленные новые виды, осуществляется смена видов на нашей планете. Естественно, изменения затрагивают и саму биосферу.

На начальных этапах развития существовали гетеротрофные анаэробные организмы, существующие в Мировом океане за счет органических веществ, возникших в результате сложных химических процессов. Затем (по мере уменьшения запасов органических веществ) появляются автотрофные организмы, способные сами создавать органические вещества, используя энергию солнечного света. В результате их жизнедеятельности (фотосинтеза) в атмосферу стал выделяться кислород. Это стало предпосылкой появления аэробных организмов. Усложнение живого, увеличение его разнообразия приводили к изменению биосферы. Следовательно, эволюция биосферы сопряжена с эволюцией форм жизни на нашей планете.

В. И. Вернадский выделял три этапа развития биосферы:

1. Первый этап — возникновение жизни и первичной биосферы. Ведущие факторы здесь — геохимические и климатические изменения на Земле.

2. Второй этап — усложнение структуры биосферы в результате появления многочисленных и разнообразных эукариотных организмов — как одноклеточных, так и многоклеточных. Движущим фактором выступает биологическая эволюция.

3. Третий этап — возникновение человека, человеческого общества и постепенное превращение биосферы в ноосферу.

Ноосфе́ра сфера разума; сфера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития (эта сфера обозначается также терминами «антропосфера», «биосфера», «биотехносфера»).

Ноосфера — предположительно новая, высшая стадия эволюции биосферы, становление которой связано с развитием общества, оказывающего глубокое воздействие на природные процессы. Согласно В. И. Вернадскому, «в биосфере существует великая геологическая, быть может, космическая сила, планетное действие которой обычно не принимается во внимание в представлениях о космосе… Эта сила есть разум человека, устремленная и организованная воля его как существа общественного».

Сфера взаимодействия общества и природы, в пределах которой разумная деятельность предстает главным, определяющим фактором развития биосферы и человечества, называется ноосферой.

Впервые термин "ноосфера" в 1926 – 1927 гг. употребили французские ученые Э. Лекруа (1870 – 1954) и П. Тейяр де Шарден (1881 – 1955) в значении "новый покров", "мыслящий пласт", который, зародившись в конце третичного периода, разворачивается вне биосферы над миром растений и животных. В их представлении ноосфера – идеальная, духовная ("мыслящая") оболочка Земли, возникшая с появлением и развитием человеческого сознания.

Заслуга наполнения данного понятия материалистическим содержанием принадлежит академику В. И. Вернадскому (1965, 1978).

В представлении В. И. Вернадского, человек – часть живого вещества, подчиненного общим законом организованности биосферы, вне которой оно существовать не может. Человек является частью биосферы, утверждал выдающийся ученый. Целью общественного развития должно быть сохранение организованности биосферы. Однако сохранение ее первичной организованности

– "нетронутой природы" – не несет в себе творческого начала в мощную геологическую силу. "И перед ним, перед его мыслью и трудом становится вопрос о перестройке биосферы в интересах свободно мыслящего человечества как единого целого. Это новое состояние биосферы, к которому мы, не замечая этого приближаемся, и есть "ноосфера". Ноосфера представляет собой качественно новый этап эволюции биосферы, в котором создаются новые формы ее организованности как новое единство, возникающее в результате взаимодействия природы и общества. В ней законы природы тесно переплетаются с социально-экономическими законами развития общества, образуя высшую материальную целостность "очеловеченной природы".

В. И. Вернадский, предугадавший наступление эпохи научно-технической революции в XX веке, основной предпосылкой перехода биосферы в ноосферу считал научную мысль. Материальным ее выражением в преобразуемой человеком биосфере является труд. Единство мысли и труда не только создает новую социальную сущность человека, но и предопределяет переход биосферы в ноосферу. "Наука есть максимальная сила создания ноосферы" – таково главное положение В. И. Вернадского в учении о биосфере, призывающем преобразовывать, а не разрушать ойкумену.


Миграция химических элементов в геосферах; закономерности миграции; геохимические потоки и барьеры, их типы; влияние физических и химических факторов на миграционные процессы (Колбышева).

ГЕОХИМИЯ (от греч. ge- Земля и химия), наука о распространенности и миграции хим. элементов в геосферах. Основы геохимии разработаны в нач. 20 в. В. И. Вернадским, А. Е. Ферсманом, В. М. Гольдшмидтом и Ф. У. Кларком. Предмет геохимии как отрасли знаний сформулировал В. И. Вернадский, назвав ее историей атомов Земли. Совр. геохимия-комплекс наук, объединяемых единой методологией и конкретными методами исследований.

Миграция элементов В соответствии с формами движения материи различают след. осн. виды миграции: мех., физ.-хим., биогенную, техногенную. Миграция элементов складывается из противоположных процессов-концентрации и рассеяния. С первыми связано образование минералов и месторождений полезных ископаемых, со вторыми-загрязнение окружающей среды и др. явления.

Механическая миграция. Этот процесс связан с речной эрозией, работой ветра (перенос по воздуху песка и пыли), ледников, морских течений и т. д. Так, при разделении в речных и морских водах взвесей песчаные частицы обогащаются преим. Si, Zr, Ti, РЗЭ, Th, глинистые - Fe, Al, Mn, Mg, K, V, Cr, Ni, Co, Сu и др. Мех. миграция почти всегда сопровождается физ.-хим., а часто и биогеохим. процессами. Однако мех. движение нередко определяет специфику миграции. Геохим. аспекты мех. миграции изучены мало.

Физико-химическая миграция. Этот процесс связан с перемещением хим. элементов в прир. водах, силикатных расплавах (магмах), атмосфере и подчиняется закономерностям разл. физ.-хим. процессов (диффузии, сорбции, растворения, осаждения и др.).

Биогенная миграция. В. И. Вернадский ввел понятие оживом веществе-совокупности живых организмов, выраженной в единицах массы и энергии. Изучение геохим. деятельности живого в-ва служит предметом биогеохимии. Область активной жизни на Земле наз. биосферой, где организмыпреобразуют солнечную энергию в энергию геохим. процессов. Главный ее источник-биохим. процессы фотосинтеза и разложения орг. в-в, в ходе к-рых в окружающую среду выделяются О2, СО2 и др. химически активные соединения. Непрерывное поступление энергии определяет неравновесность биосферы и ее частей-почв, илов, подземных вод и др.

Наиб. велико влияние "хим. работы" живого в-ва на земной пов-сти в ландшафтах материков и верх. горизонтах океана. Доказано, что живое в-во представляет собой главную хим. силу на земной пов-сти - элементы в биосфере мигрируют при непосредств. участии живого в-ва или в среде, геохим. особенности к-рой обусловлены живым в-вом, населяющим в данный момент биосферу и действовавшим на Земле в течение всей геол. истории (закон Вернадского).

Техногенная миграция (техногенез). Во 2-й пол. 20 в. техногенез оказался главным геохим. фактором на пов-сти Земли. Объектами исследований в геохимия техногенеза стали техногенные процессы в городах, агроландшафтах, районах горнообогатит. комбинатов и рудников, реках и озерах, мировом океане.

В результате техногенеза образуются техногенные геохим. аномалии, к-рые разделяют на литохим. (в почвах, городах, строениях), гидрогеохим. (вводах), атмогеохим. (в атмосфере) и биогеохим. (в организмах). Для локализации загрязнения окружающей среды предложено создавать техногенные геохим. барьеры (участки концентрации элементов, связанные с резким изменением геохим. среды).

Одной из теоретич. основ решения проблем техногенеза, в частности борьбы с загрязнением окружающей среды, стала геохимия ландшафта. Установлено, что в ландшафтах горнопром. районов изменяется режим подземных вод, развиваются заболачивание и засоление почв. В районах металлургич. комбинатов, перерабатывающих сульфидные руды, возникает техногенный сернокислый ландшафт. В дорожных ландшафтах за счет выхлопных газов автомашин и др. воздействий изменяется состав атмосферы, почв, растений и животных.

Важное значение приобрела геохимия городов-изучение биол. круговорота атомов, водной и воздушной миграции элементов.

На реки и озера ложится огромная техногенная нагрузка. По данным ЮНЕСКО, реки ежегодно сбрасывают в океан миллионы тонн техногенных Fe, Pb, Mn, P и др. элементов. В результате ионный сток рек с каждым годом увеличивается, и к нач. 70-х гг. его техногенная составляющая колебалась в пределах 30-60% от общего выноса солей. Загрязнение сильно изменяет биол. круговорот, в реках и озерах исчезает рыба, вода становится непригодной для питья. В СССР проводится широкий комплекс мероприятий по предотвращению загрязнения и очистке речных и озерных вод.

Многообразны аспекты техногенной миграции в океане. Из морской воды добывают Mg, Na, К, С1, предполагают извлекать и др. элементы. Запасы их практически не ограничены, а технология извлечения часто проще, чем при обычной добыче. Так, бурением на шельфах получают ок. 20% мировой добычи нефти. Прибрежно-морские россыпи содержат алмазы, Аи, касситерит, ильменит, рутил, циркон, монацит и др. минералы. Изучается возможность добычи на шельфах фосфоритов и глауконитовых песков. Разработаны методы добычи железомарганцевых конкреций (Fe, Mn, Ni, Co, Си) океанич. дна. Открытие металлоносных рассолов во впадинах Красного моря поставило вопрос об извлечении из них разл. металлов. В океан поступает огромное кол-во техногенных отходов, нарушающих его биол. режим. Для борьбы с загрязнением океанич. вод осуществляются спец. исследования, разработаны международные соглашения.

Геохимические барьеры-участки биосферы на которых в миграционном потоке на коротком расстоянии резко уменьшается интенсивность миграции химических элементов, повышается концентрация. Основные типы геохимических барьеров. По форме геохимические барьеры разделяются на линейные, приуроченные к границам между элементарными ландшафтными ареалами, и площадные, имеющие субгоризонтальное простирание. Размеры геохимических барьеров могут варьироваться от нескольких сантиметров до сотен и тысяч метров. 1. Природные. Смена факторов (и геохимической обстановки) обусловленно природными особенностями конкретного участка биосферы. 2. Техногенные. Смена геохимической обстановки происходит в результате антропогенной деятельности.

Не доделаны закономерности и влияния факторов, не могу найти, может не правильно ищу….но постараюсь это сделать





Дата публикования: 2015-07-22; Прочитано: 1445 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.02 с)...