Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Недостаткомшлицевого соединения является относительно высокая стоимость и трудоёмкость изготовления



Шлицевые валы изготавливаются в массовом производстве по технологии, аналогичной технологии изготовления зубчатых колёс (метод обкатки, способ – нарезание посредством червячных фрез), в штучном и мелкосерийном производстве используется метод копирования (требует наличия специального инструмента), а в случае отсутствия специнструмента валы изготавливаются методом фрезерования на универсальных фрезерных станках. Возможно также изготовление таких валов на обрабатывающих центрах с числовым программным управлением.

Шлицевые пазы в отверстиях ступиц при массовом производстве изготавливаются методом протягивания (инструмент – протяжка) или долблением специальными долбяками. В штучном производстве изготовление ведётся только долблением.

Прямобочные и эвольвентные шлицевые соединения стандартизованы. Прямобочные шлицевые соединения выполняются с числом шлицов 6 £ z£ 20 для диаметров валов 14 £ d £ 125 мм; эвольвентные - 6 £ z £ 82 для валов диаметром 4 £ d £ 500 мм. Стандартом для прямобочных шлицов предусмотрены 3 серии соединений: лёгкая, средняя и тяжёлая, предназначенные для восприятия нагрузки разной интенсивности.

Рис. 14.8. Типы и центрирование зубчатых соединений: прямобочные - а) по боковым поверхностям b; б) по наружному диаметру D; в) по внутреннему диаметру d; эвольвентные – г) по боковым поверхностям; д) по наружному диаметру; треугольные - е) центрируются только по боковым поверхностям.

Центрирование вала и ступицы в шлицевых соединениях может выполняться тремя способами:

1. по боковым поверхностям шлицов;

2. по внешнему (наружному) диаметру (диаметру вершин шлицов);

3. по внутреннему диаметру (по дну впадин между шлицами).

В прямобочных шлицевых соединениях используют любой из трёх названных способов центрирования (рис. 14.8, а, б, в), в эвольвентных – только два, по боковым поверхностям или по наружному диаметру (рис. 14.8, г, д), в соединениях с треугольными шлицами применим только способ центрирования по боковым поверхностям (рис. 14.8, е).

Центрирование по боковым поверхностям зубьев обеспечивает более равномерное распределение нагрузки, но хуже центрирует соединение. При наличии радиальной нагрузки происходит смещение зубцов относительно впадин, что ведёт к быстрому износу соединения вследствие возникновения фриттинг-коррозии. Этот вид центрирования наиболее выгоден для соединений подверженных действию реверсивных и неравномерных (особенно ударных) нагрузок при относительно невысоких скоростях вращения.

Центрирование по диаметрам, наружному или внутреннему обеспечивает более высокую соосность вала и ступицы. Выбор в качестве центрирующего внутреннего или наружного диаметра определяется технологическими требованиями. При относительно невысокой твёрдости ступицы (£350 HB или £38 HRC) центрирование лучше выполнять по наружному диаметру (80 % прямобочных шлицевых соединений). В этом случае вал шли­фуется по внешнему диаметру, а шлицевое отверстие ступицы выполняют протягиванием. При более высоких значениях твёрдости ступицы центри­ровать соединение предпочтительно по внутреннему диаметру. В этом вари­анте центрирования внутренний диаметр ступицы и вала шлифуется, но шлифование выполняют на разных станках: ступицу шлифуют на внутришлифовальном, а вал на шлицешлифовальном.

Профильные, призматические и фрикционные соединения.

Профильное соединение - подвижное или неподвижное соединение двух соосных деталей, контактная поверхность которых в поперечном сечении имеет форму плавной замкнутой кривой, отличной от окружности.

Рис. 14.9. Профильное соединение: а) продольное сечение; б), в), г) возможные поперечные сечения: овальное, треугольное, квадратное.

Достоинством профильного соединения является отсутствие выступающих элементов, вызывающих концентрацию напряжений. Однако в профильных соединениях вследствие малых плеч контактные напряжения существенно выше по сравнению со шлицевыми, причём напряжения эти тем больше, чем большее число граней имеет профильное соединение. Кроме того, в профильном соединении на ступицу действуют значительные распорные силы, требующие большей толщины её стенок. По этой причине профильные соединения применяются в малонагруженных передачах, например, в соединениях рычагов с поворотными валиками в механизмах переключения передач.

Рис. 14.10. Соединение призматическое «на квадрат».

Призматическое соединение -подвижное или неподвижное соединение двух соосных деталей, контактная поверхность которых в поперечном сечении имеет форму многоугольника. Наиболее распространёнными среди призматических соединений являются соединения «на квадрат» (рис. 14.10) или «на шестигранник». Призматические соединения наиболее просты в изготовлении при индивидуальном производстве.

К группе фрикционных соединений (соединений с натягом) отно­сятся соединения, в которых передача крутящего момента происходит за счёт сил трения, возникающих между контактирующими поверхностями соединения вследствие их предварительного сжатия при сборке. Такими являются соединения прессовые, клеммовые и конусные.

Фрикционные соединения просты в изготовлении и сборке, но склонны к ослаблению несущей способности при многократной переборке. Разборка и сборка таких соединений требует особой аккуратности и, как правило, должна выполняться с применением специальных технологических приёмов и приспособлений.

Прессовое соединение характеризуется тем, что в свободном состоянии (до сборки) диаметр посадочной поверхности вала несколько больше, чем диаметр отверстия в ступице. После сборки эти два диаметра выравниваются, при этом посадочная часть вала сжимается в радиальном направлении, а ступица растягивается. Между контактирующими поверхностями вала и ступицы действуют контактные напряжения сжатия, а нагружение соединения крутящим моментом вызывает появление и сил трения.

Рис. 14.12. Конусное фрикционное соединение

На концевых участках валов предпочтение часто отдаётся конусным соединениям (рис. 14.12), для затяжки которых конец вала снабжается резьбовой частью. Затяжка соединения осуществляется навинчиванием гайки на резьбовой конец вала, либо завинчиванием винта, если концевой участок вала снабжён внутренней резьбой. Контроль затяжки осуществляется, как правило, по величине осевого перемещения ступицы относительно вала. После необходимой затяжки резьбовой элемент, винт или гайка, стопорится каким-либо из известных способов.

Рис. 14.13.Клеммовое соединение

Расчёт несущей способности соединения производится по формулам для цилиндрических прессовых соединений (см. (14.12)…(14.17)), принимая в качестве расчётных диаметры в серединном сечении соединения. Величина натяга в этом случае определяется как произведение конусности на осевое перемещение ступицы при затяжке соединения.

В клеммовом соединении сжатие деталей обеспечивается специальными болтами. Соединение вследствие отсутствия шпонок позволяет выполнять закрепление деталей в произвольном положении, как по длине, так и по углу поворота. Это позволяет использовать соединение для закрепления на валах кривошипов, рычагов, кронштейнов.

Вопросы для самоконтроля:

1. В чём отличие рассмотренных в данной лекции соединений от описанных ранее?

2. Какое соединение называют шпоночным, какой признак отличает его от других соединений?

3. Какие разновидности шпоночных соединений Вы знаете?

4. Какими положительными качествами обладают шпоночные соединения?

5. Каковы недостатки шпоночных соединений?

6. Назовите основные материалы, необходимые для изготовления шпонок.

7. Назовите разновидности призматических шпонок.

8. Какие параметры призматических шпонок стандартизованы?

9. В чём заключаются преимущества сегментных шпонок перед призматическими.

10. Назовите предпочтительные места валов для установки призматических и сег­ментных шпонок?

12. Что можно предпринять, если призматическая или сегментная шпонка не удов­летворяет заданным условиям работы?

13. Что называют цилиндрической шпонкой?

14. Расскажите о тангенциальных шпонках, почему их так называют?

15. Какие особенности клиновых шпоночных соединений, в чем их достоинства и недостатки?

16. Назовите главный признак шлицевых соединений.

17. Какие виды шлицевых соединений Вы знаете?

18. Назовите основные достоинства и недостатки шлицевых соединений.

19. Как осуществляется центрирование деталей шлицевого соединения?

21. Каковы особенности и достоинства эвольвентного шлицевого соединения.

23. Каковы особенности и достоинства треугольного шлицевого соединения.

26. Назовите главные особенности профильного соединения.

27. Назовите главные особенности призматического соединения.

28. Назовите главные особенности фрикционных соединений.

29. Какие виды соединений можно отнести к группе фрикционных?

31. Каким способом создаётся необходимый натяг в конусных соединениях?

32. Назовите основные особенности клеммового соединения.

Смазка механизмов и смазочные устройства.

Защита элементов механизма от неблагоприятных факторов внешней среды ещё не гарантирует нормальной его работы. Одним из необходимых условий длительной и эффективной работы любого механизма является смазывание поверхностей трения.

Смазыванием называют подведение смазывающего материала к поверхностям трения механизма с целью снижения потерь энергии в механизме, уменьшения скорости изнашивания поверхностей трения и защиты этих поверхностей от коррозии.

В зависимости от времени смазывание различают

разовое (например, смазывание подшипников асинхронных электродвигателей),

периодическое (например, смазка шарниров рулевого управления и элементов ходовой части автомобилей при техническом обслуживании) и

непрерывное (например, смазка зубьев шестерен в коробках передач МГКМ, главных передач автомобилей);

от способа подвода смазывающего агента к поверхностям трения -

картерную смазку (смазку окунанием; например, в коробках передач автомобилей),

циркуляционную смазку (например, смазка подшипников скольжения ДВС);

от количества пар трения, обслуживаемых системой смазки -

индивидуальная (смазывающий агент подается только к одной па­ре трения),

централизованная (смазывающий агент подается к нескольким па­рам трения).

Подачу смазывающего агента к поверхностям трения обеспечивают смазочные устройства. Конструкция смазочных устройств определяется особенностями и ответственностью проектируемого механизма или машины в целом, режимом её работы, размерами элементов пары трения, условиями эксплуатации и многими другими факторами.

Рис. 15.1. Маслёнки для периодической смазки: а, б – жидкими маслами; в, г – консистентной смазкой.

Простейшими устройствами, предназначенными для индивидуальной периодической смазки узлов трения, являются маслёнки (рис. 15.1). Для подачи жидких масел применяют масленки с поворотной крышкой (рис. 15.1, а) и шариковые (рис. 15.1, б). Масло в эти маслёнки подается с помощью переносных наливных маслёнок или специальных шприцов. Для подачи консистентной (пластичной) смазки применяются колпачковые маслёнки (рис. 15.1, в) и прессмаслёнки (рис. 15.1, г). Внутренняя полость колпачковой маслёнки заполняется смазочным материалом и посредством периодического подкручивания колпачка на 1…2 оборота проталкивается к узлу трения. Прессмаслёнки стандартизованы (ГОСТ 19853-74) и выпускаются массовым тиражом промышленностью. Консистентная смазка через прессмаслёнку продавливается в узел трения специальным шприцом, в полости которого создаётся избыточное давление вручную или механически.

Для обеспечения постоянного смазывания зубчатых, червячных и цепных передач наибольшее распространение получила картерная смазка окунанием. При этом способе смазки жидкое масло необходимой консистенции заливается непосредственно в корпус механизма, причём его уровень устанавливается таким, чтобы часть зубьев, участвующих в работе передачи, в своём движении проходила через масляную ванну. Такой способ смазки применим при окружных скоростях зубчатых венцов колёс до 15 м/с. При более высоких окружных скоростях зубьев колёс применяют струйную смазку с подачей масла струёй под избыточным давлением непосредственно в зону контакта зубьев. Глубина погружения в масляную ванну зубьев цилиндрических колёс должна составлять не менее удвоенной высоты зуба в неработающем механизме. Глубина погружения червяка при его нижнем расположении относительно червячного колеса может составлять до половины его делительного диаметра, однако уровень масла выше середины тел качения подшипников, установленных на валу червяка, нежелателен.

При низком уровне масла в картере на быстроходные валы устанавливают специальные разбрызгиватели. Смазывание зубчатого зацепления и подшипников в этом случае осуществляется за счёт образования масляного тумана в полости корпуса передачи.

Уплотняющие устройства.

В местах соединения корпусных деталей, а также в местах входа и выхода валов в корпус механизма устанавливаются уплотняющие устройства (уплотнения), предназначенные для защиты внутреннего пространства механизма от попадания вредных ингредиентов внешней среды (воды, пыли, абразивных частиц) и для предохранения от вытекания из внутреннего пространства смазочных материалов.

Классификация уплотнений:

1. по характеру относительной подвижности деталей, между которыми устанавливается уплотнение – подвижное и неподвижное;

2. по характеру взаимодействия с движущейся детальюконтактные (рис. 15.2, а, б, в, г) и бесконтактные (рис. 15.2, д, е);

3. по способу создания уплотняющего давления между уплотнительным элементом и подвижной деталью – пассивные или натяжные (рис. 15.2, а, б), в которых необходимое давление между уплотняемыми поверхностями создается за счёт деформации уплотняющего элемента и не зависит от давления среды в полости корпуса механизма, и активные (рис. 15.2, в, г), в которых давление между уплотняемыми поверхностями растет пропорционально увеличению давления во внутренней полости механизма;

4. в зависимости от материала, из которого изготовлен уплотняющий элемент – металлические (рис. 15.2, б, г) и неметаллические (рис. 15.2, а, в);

5. по форме подвижной уплотняемой поверхноститорцевые (плоскостные, рис. 15.2, г), цилиндрические (рис. 15.2 а, б, в, д, е, ж), конические, сферические.

Рис. 15.2. уплотнения валов: а – сальник; б – металлические кольца; в – манжетное; г – торцовое; д – лабиринтное; е – двойное лабиринтное ж – комбинированное (сальник + щелевое).

Из контактных уплотнений валов наиболее широкое применение находят сальниковые (рис. 15.2, а) и манжетные (рис. 15.2, в) уплотнения.

Сальники – неметаллические контактные уплотнения пассивного типа. Применяются сальниковые уплотнения при относительных скоростях скольжения (скорость уплотняемой поверхности вала) до 5 м/с и давлениях в рабочей полости до 0,5 МПа.

Рис. 15.3. Конструкция резиновой армированной манжеты:1 – браслетная пружина; 2 – тело манжеты; 3 – металлическая армирующая вставка

Простейшее сальниковое уплотнение (рис. 15.2, а) содержит кольцо прямоугольного сечения, пропитанное смазывающим материалом и запрессованное в трапециевидную канавку, угол между боковыми поверхностями которой составляет 20…30°.Сальниковое кольцо чаще всего выполняют из войлока, или кожи и проваривают его перед установкой в консистентной смазке.

В манжетных уплотнениях (рис. 15.2, в) предварительное поджатие уплотняющей кромки манжеты к поверхности вала происходит за счёт деформации манжеты и натяжения браслетной пружины, которой всегда снабжается манжета (рис. 15.3). Увеличение давления во внутренней полости корпуса механизма способствует возрастанию усилия, прижимающего ласт манжеты к поверхности вала, препятствуя тем самым сообщению внутренней полости с внешней средой. Армированные манжеты могут изготавливаться как из различных резиновых смесей, так и из пластиков (полиуретан, поливинилхлорид). Манжетные уплотнения могут применяться при скоростях скольжения до 10 м/с.

Бесконтактные уплотнения можно разделить на 3 основных группы:

1. уплотнения сопротивления (резистивные);

2. инерционные уплотнения;

3. насосные уплотнения.

Рис. 15.4. Бесконтактные уплотнения: а – щелевое с канавками в щели, б – лабиринтное, в – насосное сдвоенное.

Резистивные уплотнения представляют собой тонкую щель или лабиринт, создающие за счёт малого поперечного сечения и большой протяжённости повышенное сопротивление протеканию жидкостей и газов (рис. 15.2, д, е и рис. 15.4, а, б). В таком уплотнении утечки возможны постоянно, но они не велики и выполняют положительную роль, вынося наружу посторонние частицы, попадающие в зону уплотнения. Щелевые уплотнения зачастую снабжаются дополнительными канавками (рис. 15.4, а), выравнивающими давление протекающей жидкости по окружности щели, и создающие дополнительное сопротивление протекающей жидкости.

К инерционным уплотнениям можно отнести маслоотбрасывающие кольца и диски, устанавливаемые на валах рядом с подшипниковыми гнёздами. Частицы жидкости или твёрдые, попадая на вращающийся вместе с валом диск, отбрасываются силами инерции по радиусам на периферию. Таким образом исключается возможность их попадания в зазор между валом и отверстием, через которое он проходит.

Пример исполнения насосного уплотнения представлен на рис. 15.4, в. Основным элементом этого уплотнения являются резьбовые канавки, нарезанные на поверхности части вала, находящейся в отверстии, через которое вал проходит. Направление нарезки канавок выбрано таким, что любая частица, попавшая в канавку, при вращении вала, двигаясь по канавке за счёт сил инерции, будет выброшена из зазора. Такой процесс может происходить только при вращении вала в одну сторону, на элементе, изображённом на рис. 15.4, в, а уплотнение будет работать только тогда, когда вал будет вращаться против часовой стрелки, если смотреть на его торец с левой стороны. Поэтому такое уплотнение можно применять в тех механизмах, где вал постоянно имеет однонаправленное движение.

Наличие зазора в бесконтактных уплотнениях не обеспечивает их герметичности при неработающем механизме, однако в процессе работы механизма эти уплотнения весьма успешно защищают его внутреннее пространство от пыли и грязи. По этой причине такие уплотнения применяют, как правило, совместно с контактными, устанавливая их снаружи от последних (рис. 15.2, ж).

В настоящей лекции кратко представлены основные сведения о корпусах агрегатов и корпусных деталях, о смазке механизмов и смазочных устройствах, а также об уплотняющих устройствах, предназначенных для герметизации внутреннего пространства механизмов в местах прохождения валов через стенки корпусных деталей. Более полную информацию по этим вопросам можно получить в учебниках, названных в начале курса, и в технической литературе. С некоторыми видами уплотнительных элементов обучаемые смогут ознакомиться на последующих практических и лабораторных занятиях.

Вопросы для самоконтроля:

6. Что понимают под термином «смазывание механизмов»?

7. Какие виды и способы смазывания Вы можете назвать?

8. Какими устройствами обеспечивается смазывание механизмов?

9. Какую роль выполняют уплотняющие элементы в механизмах и агрегатах?

10.Назовите классы и виды уплотнительных устройств.

11.Приведите примеры контактных уплотнений, в чём особенность их работы?

12.Сравните работу сальникового и манжетного уплотнения.

13.Приведите примеры бесконтактных уплотнений, в чём особенность их работы?

14.Сравните работу щелевого и лабиринтного уплотнения.

15.Каковы особенности работы насосного уплотнения?

16.Что является причиной совместного применения контактных и бесконтактных уплотнений?





Дата публикования: 2015-07-22; Прочитано: 657 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.015 с)...