Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Подуровень конвергенции (Convergence Sublayer - CS)



Подуровень расположен над МАС уровнем и предназначен для организации взаимодействия между более высокими уровнями сети и МАС уровнем. В стандарте определены два типа уровня конвергенции: АТМ и пакетный. Первый обеспечивает взаимодействие МАС уровня 802.16 и АТМ протокола, второй - взаимодействие с пакетными протоколами.

Протокол MАС уровня Протокол описывает порядок взаимодействия между МАС уровнем и подуровнем CS, формат фрейма MAC (MAC Protocol Data Units - PDU), сервисы и механизмы опроса (поллинга), обеспечивающие поддержку качества обслуживания - QoS:

· Unsolicited Grant Service (UGS) предназначен для поддержки потоков реального времени, генерирующих пакеты данных фиксированного размера, таких, как передача потоков Е1 и голоса поверх IP без подавления пауз.

· Real-Time Polling Service (rtPS) предназначен для поддержки потоков реального времени, формирующих пакеты данных переменной длины, таких, как MPEG видео.

· Non-Real-Time Polling Service (nrtPS) предназначен для поддержки потоков, требующих пакетов переменной длины, таких, как широкополосная FTP.

· Best Effort (BE) service предназначен для эффективного обслуживания трафика best effort.

В протоколе МАС уровня предусмотрена поддержка дуплекса (частотного или временного), синхронизации, разрешение коллизий, возможных на этапе установления системы или на интервалах запроса на передачу. На этом уровне также обеспечивается измерение дальности до абонентских станций (АС), необходимое для корректной работы протокола, обновление описания канала и разделение абонентского оборудования на абонентские группы.

Уровень безопасности описывает алгоритмы шифрования на участке между базовой станцией (БС) и АС. Уровень безопасности включает два протокола:

1) Протокол инкапсуляции для шифрования пакетов, включающий несколько вариантов пар шифрование-аутентификация и правила их применения к пакетам МАС уровня;

2) Протокол управления ключами шифрования PKM (Privacy Key Management), обеспечивающий распределение ключей от БС для АС.

Физический уровень. Протоколы физического уровня описывают методы организации дуплекса, способы адаптации, методы множественного доступа и модуляции.

Предусмотрены режимы временного и частотного дуплекса. Вид модуляции и кодирования могут изменяться адаптивно от пакета к пакету индивидуально для каждого абонента, что позволяет увеличить реальную пропускную способность примерно вдвое по сравнению с неадаптивными системами. Передача от АС к БС строится на комбинации двух методов многостанционного доступа: DAMA - доступ по запросу и TDMA - доступ с временным разделением. Структура пакетов физического уровня поддерживает переменную длину пакета МАС уровня. Предусмотрена рандомизация, помехоустойчивое кодирование и три метода модуляции: QPSK, 16QAM и 64QAM. Два последних метода предусмотрены для АС как опциональные.

Передача от БС к АС ведется в режиме временного дуплекса в едином потоке для всех АС одного сектора. Передатчик осуществляет рандомизацию, помехоустойчивое кодирование и модуляцию QPSK, 16QAM и 64QAM. Последний метод модуляции предусмотрен для БС как опциональный.

Информация в системе передается фреймами, которые делятся на два субфрейма. Первый используется для передачи БС, второй - АС.

Стандартом также рекомендуются полосы частот и соответствующие скорости передачи при различных видах модуляции. Максимальная скорость передачи, предусмотренная в стандарте - 134,4 Мбит/с при полосе 28 МГц и модуляции 64QAM.

В первой версии стандарта предусматривалось использование диапазона частот 10-66 ГГц для которого рекомендовался режим передачи на одной несущей - single-carrier (SC). Особенности распространения радиоволн этого диапазона ограничивают возможности работы условиями прямой видимости. В типичных городских условиях это позволяет подключить около 50% абонентов, находящихся в пределах рабочей дальности от базовой станции. До остальных 50% прямой видимости, как правило, нет. Поэтому в процессе работы над стандартом диапазон частот был расширен включением полосы 2-11 ГГц, в которой, помимо SC, предусмотрены еще и режимы ортогонального частотного мультиплексирования (Orthogonal Frequency Division Multiplexing - OFDM) и множественного доступа на основе ортогонального частотного мультиплексирования (Orthogonal Frequency Division Multiply Access - OFDMA).

В режиме OFDM предусмотрена одновременная передача на 256 поднесущих, что позволяет, за счет увеличения примерно в такое же число раз длительности элементарного символа, одновременно принимать прямой и отраженные от препятствий сигналы или вообще работать только по отраженным сигналам вне пределов прямой видимости. Режим OFDMA предусматривает работу на 2048 поднесущих сразу с несколькими абонентами в режиме OFDM. При стандартном количестве поднесущих - 256, обеспечивается одновременная работа с 8 абонентами.

В стандарте также описаны модели сред распространения радиоволн и на этой основе сформулированы требования к параметрам радиооборудования. Предусмотрены возможности автоматической регулировки усиления, динамического выбора частоты в нелицензируемых диапазонах. Помимо топологии точка-многоточка стандартом опционально предусмотрена полносвязная топология - Mesh Mode, позволяющая обеспечить прямую связь между АС, преодолеть помехи, характерные для безлицензионных диапазонов, за счет выбора направления приема, свободного от них, создавать хорошо масштабируемые сети и работать вне прямой видимости даже в одночастотном режиме SC, за счет ретрансляции сигналов АС.

Это было одной из особенностей протокола WirelessMAN-SC. Однако частотный диапазон с такими характеристиками (то есть с требованием прямой видимости приемника и передатчика и невозможностью работы на отражениях) позволял избежать одной из главных проблем радиосвязи — многолучевого распространения сигнала. Ширина каналов связи, которые могут быть применены в этом частотном диапазоне, является достаточно большой (типичное значение — 25 или 28 МГц), что позволяет достигать высокой (порядка 120 Мбит/с) скорости передачи данных.

Основным отличием стандарта 802.16a от базового стандарта 802.16 было использование частотного диапазона 2-11 ГГц, что потребовало и существенного пересмотра техники кодирования и модуляции сигнала на физическом уровне.

Логическим продолжением стандарта 802.16a стал стандарт 802.16d, который предусматривал возможность реализации фиксированного доступа внутри помещений.

В настоящее время на стадии разработки находится стандарт IEEE 802.16е, который рассматривает вопросы роуминга между сетями различных беспроводных стандартов, чтобы пользователь без ущерба для сеанса связи мог переходить из беспроводных сетей стандарта IEEE 802.11 в сети IEEE 802.16 и обратно.

Решение вопросов роуминга представляется весьма важным для дальнейшего продвижения беспроводных технологий. Сегодня пользователи сетей стандарта IEEE 802.11 могут пользоваться услугами беспроводного доступа, только находясь на территории хот-спота, или зоны доступа. Покидая такую зону, они теряют возможность соединения. С помощью технологии IEEE 802.16e пользователи получат возможность оптимального соединения: посредством IEEE 802.11 — находясь в пределах соответствующего хот-спота, посредством IEEE 802.16 — находясь в зоне действия городской сети WMAN.

Если протокол IEEE 802.16 — это протокол операторского класса, то протокол IEEE 802.16e ориентирован на конечных пользователей, причем мобильных, и в этом смысле он представляет собой альтернативу стандартам 802.11a/b/g. По мнению экспертов Intel, в недалеком будущем пользователь, имея ноутбук или КПК со встроенными возможностями стандарта IEEE 802.16e, сможет постоянно оставаться на связи в любой точке города. Мало того, принятие IEEE 802.16 в качестве общеевропейского стандарта позволит активным путешественникам пользоваться роумингом по всей Европе.

Наиболее активно продвижением IEEE 802.16 занимается сейчас WiMAX (Worldwide Interoperability for Microwave Access) — некоммерческая организация, образованная по инициативе корпорации Intel с участием ведущих производителей телекоммуникационного оборудования (Airspan Networks, Alvarion Ltd, Aperto Networks, Fujitsu Microelectronics America, Intel, OFDM Forum, Proxim Corporation, Wi-LAN, Inc. и др.).





Дата публикования: 2015-04-10; Прочитано: 619 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...