Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Арифметические схемы



Перейдем от СИС общего назначения к комбинационным схемам СИС, которые используются для выполнения арифметических операций. Мы начнем с простой 8-разрядной схемы сдвига, затем рассмотрим структуру сумматоров и, наконец, изучим арифметико-логические устройства, которые играют существенную роль в любом компьютере.

3.1.Схемы сдвига

Первой арифметической схемой СИС, которую мы рассмотрим, будет схема сдвига, содержащая 8 входов и 8 выходов (рис. 3.15). Восемь входных битов подаются на линии Do,..., D7. Выходные данные, которые представляют собой входные данные, сдвинутые на 1 бит, поступают на линии So,. •., S7. Линия управления С определяет направление сдвига: 0 - налево, 1 - направо.

Чтобы понять, как работает такая схема, рассмотрим пары вентилей И (кроме

крайних вентилей) Если С=1, правый член каждой пары включается, пропуская через себя соответствующий бит. Так как правый вентиль И соединен с входом вентиля ИЛИ, который расположен справа от этого вентиля И, происходит сдвиг вправо. Если С=0, включается левый вентиль И из пары, и тогда происходит сдвиг влево.

3.2.Сумматоры

Компьютер, который не умеет складывать целые числа, практически немыслим. Следовательно, схема для выполнения операций сложения является существенной частью любого процессора. Таблица истинности для сложения одноразрядных целых чисел показана на рис. 3.16, а. Здесь имеется два результата: сумма входных переменных А и В и перенос на следующую (левую) позицию. Схема для вычисления бита суммы и бита переноса показана на рис. 3.16,6. Такая схема обычно называется полусумматором.

Полусумматор подходит для сложения битов нижних разрядов двух многобитовых слов. Но он не годится для сложения битов в середине слова, потому что не может осуществлять перенос в эту позицию. Поэтому необходим полный сумматор (рис. 3.17). Из схемы должно быть ясно, что полный сумматор состоит из двух полусумматоров. Сумма равна 1, если нечетное число переменных А, В и Вход переноса принимает значение 1 (то есть если единице равна или одна из переменных, или все три). Выход переноса принимает значение 1, если или А и В одновременно равны 1 (левый вход в вентиль ИЛИ), или если один из них равен 1, а Вход переноса также равен 1. Два полусумматора порождают и биты суммы, и биты переноса.

Чтобы построить сумматор, например, для двух 16-битных слов, нужно продублировать схему, изображенную на рис. 3.17, б, 16 раз. Перенос производится в левый соседний бит. Перенос в самый правый бит соединен с 0. Такой сумматор называется сумматором со сквозным переносом. Прибавление 1 к числу 111... 111 не осуществится до тех пор, пока перенос не пройдет весь путь от самого правого бита к самому левому. Существуют более быстрые сумматоры, работающие без подобной задержки. Естественно, предпочтение обычно отдается им.

Рассмотрим пример более быстрого сумматора. Разобьем 32-разрядный сумматор на 2 половины: нижнюю 16-разрядную и верхнюю 16-разрядную. Когда начинается сложение, верхний сумматор еще не может приступить к работе, поскольку он не узнает значение переноса, пока не совершится 16 суммирований в нижнем сумматоре.

Однако можно сделать одно преобразование. Вместо одного верхнего сумматора можно получить два верхних сумматора, продублировав соответствующую часть аппаратного обеспечения. Тогда схема будет состоять из трех 16-разрядных сумматоров: одного нижнего и двух верхних U0 и U1, которые работают параллельно. В сумматор U0 в качестве переноса поступает 0, а в сумматор U1 в качестве переноса поступает 1. Оба верхних сумматора начинают работу одновременно с нижним сумматором, но только один из результатов суммирования в двух верхних сумматорах будет правильным. После сложения 16 нижних разрядов становится известно значение переноса в верхний сумматор, и тогда можно определить правильный ответ. При таком подходе время сложения сокращается в два раза. Такой сумматор называется сумматором с выбором переноса. Можно разбить каждый 16-разрядный сумматор на два 8-разрядных и т. д.

3.3.Арифметико-логические устройства

Большинство компьютеров содержат одну схему для выполнения операций И, ИЛИ и сложения над двумя машинными словами. Обычно такая схема для п-битных слов состоит из п идентичных схем для индивидуальных битовых позиций.

На рис. 3.18 изображена такая схема, которая называется арифметико-логическим устройством, или АЛУ. Это устройство может вычислять одну из 4 следующих функций: А И В, А ИЛИ В, В и А+В. Выбор функции зависит от того, какие сигналы поступают на линии Fo и F,: 00,01,10 или 11 (в двоичной системе счисления). Отметим, что здесь А+В означает арифметическую сумму А и В, а не логическую операцию И.

В левом нижнем углу схемы находится двухразрядный декодер, который порождает сигналы включения для четырех операций. Выбор операции определяется сигналами управления Fo и Fj. В зависимости от значений Fo и Fi выбирается одна из четырех линий разрешения, и тогда выходной сигнал выбранной функции проходит через последний вентиль ИЛИ.

В верхнем левом углу схемы находится логическое устройство для вычисления А И В, А ИЛИ В и В, но по крайней мере один из этих результатов проходит через последний вентиль ИЛИ в зависимости от того, какую из разрешающих линий выбрал декодер. Так как ровно один из выходных сигналов декодера будет равен 1, то и запускаться будет ровно один из четырех вентилей И. Остальные три вентиля будут выдавать 0 независимо от значений А и В. АЛУ может выполнять не только логические и арифметические операции над А и В, но и делать их равными нулю, отрицая ENA (сигнал разрешения А) или ENB (сигнал разрешения В). Можно также получить X, установив INVA (инверсию А). Зачем нужны ENA, ENB и INVA, мы рассмотрим в главе 4. При нормальных условиях и ENA, и ENB равны 1, чтобы разрешить поступление обоих входных сигналов, а сигнал INVA равен 0. В этом случае А и В просто поступают в логическое устройство без изменений.

В нижнем правом углу находится полный сумматор для подсчета суммы А и В и для осуществления переносов. Переносы необходимы, поскольку несколько таких схем могут быть соединены для выполнения операций над целыми словами.

Одноразрядные схемы, подобные той, которая изображена на рис. 3.18, называются разрядными микропроцессорными секциями. Они позволяют разработчику сконструировать АЛУ любой желаемой ширины. На рис. 3.19 показана схема 8-разрядного АЛУ, составленного из восьми одноразрядных секций. Сигнал INC (увеличение на единицу) нужен только для операций сложения. Он дает возможность вычислять такие суммы, как А+1 и А+В+1.

Лекция 7. Микросхемы памяти.

1.Защелки, триггеры.

2.Регистры и организация памяти.

3.Микросхемы памяти ОЗУ и ПЗУ.

Память

Память является необходимым компонентом любого компьютера. Без памяти не было бы компьютеров, по крайней мере таких, какие есть сейчас. Память используется как для хранения команд, которые нужно выполнить, так и данных. В следующих разделах мы рассмотрим основные компоненты памяти, начиная с уровня вентилей. Мы увидим, как они работают и как из них можно получить память большой емкости.





Дата публикования: 2014-10-17; Прочитано: 3284 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...