Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Пример зацикливания пакетов



Рассмотрим случай зацикливания пакетов на примере сети, изображенной на рис. 17.17. Пусть маршрутизатор R1 обнаружил, что его связь с непосредственно подключенной сетью 201.36.14.0 потеряна (например, по причине отказа интерфейса 201.36.14.3). Марш­рутизатор R1 отмечает в своей таблице маршрутизации, что сеть 201.36.14.0 недоступна. В худшем случае он обнаружит это сразу же после отправки очередных RIP-сообщений, так что до начала нового цикла его объявлений, в котором он должен сообщить соседям, что расстояние до сети 201.36.14.0 стало равным 16, остается почти 30 секунд. Каждый маршрутизатор работает на основании своего внутреннего таймера, не синхронизируя работу по рассылке объявлений с другими маршрутизаторами. Поэтому весьма вероятно, маршрутизатор R2 опередит маршрутизатор R1 и передаст ему свое сообщение раньше, чем R1 успеет передать новость о недостижимости сети 201.36.14.0. А в этом сообщении имеются данные, порожденные записью в таблице маршрутизации R2 (табл. 17.5).

Таблица 17.5. Таблица маршрутизации маршрутизатора R2

Номер сети Адрес следующего маршрутизатора Порт Расстояние
201.36.14.0 132.11.0.7    

Эта запись, полученная от маршрутизатора R1, была корректна до отказа интерфейса 201.36.14.3; теперь она устарела, но маршрутизатор R2 об этом не знает.

Далее маршрутизатор R1 получает новую информацию о сети 201.36.14.0 — эта сеть дости­жима через маршрутизатор R2 с метрикой 2. Раньше R1 также получал эту информацию от R2, но игнорировал ее, так как его собственная метрика для 201.36.14.0 была лучше. Теперь R1 должен принять данные о сети 201.36.14.0, полученные от R2, и заменить запись в таблице маршрутизации о недостижимости этой сети (табл. 17.6).

Таблица 17.6. Таблица маршрутизации маршрутизатора R1

Номер сети Адрес следующего маршрутизатора Порт Расстояние
201.36.14.0 132.11.0.101    

В результате в сети образуется маршрутная петля: пакеты, направляемые узлам сети 201.36.14.0, станут передаваться маршрутизатором R2 маршрутизатору R1, а маршрутизатор R1 будет возвращать их маршрутизатору R2. IP-пакеты продолжат циркулировать по этой петле до тех пор, пока не истечет время жизни каждого пакета. Рассмотрим периоды времени, кратные времени жизни записей в таблицах маршрутизаторов.

Время 0-180 с. После отказа интерфейса в маршрутизаторах R1 и R2 будут сохраняться некорректные записи. Маршрутизатор R2 по-прежнему снабжает маршрутизатор R1 своей записью о сети 201.36.14.0 с метрикой 2, так как ее время жизни не истекло. Пакеты зацикливаются.

Время 180-360 с. В начале этого периода у маршрутизатора R2 истекает время жиз­ни записи о сети 201.36.14.0 с метрикой 2, так как маршрутизатор R1 в предыдущий период посылал ему сообщения о сети 201.36.14.0 с худшей метрикой, чем у R2, и они не могли подтверждать эту запись. Теперь маршрутизатор R2 принимает от маршрутизатора R1 запись о сети 201.36.14.0 с метрикой 3 и трансформирует ее в запись с метрикой 4. Маршрутизатор R1 не получает новых сообщений от маршрутизатора R2 о сети 201.36.14.0 с метрикой 2, поэтому время жизни его записи начинает уменьшаться. Пакеты продолжают зацикливаться.

Время 360-540 с. У маршрутизатора R1 истекает время жизни записи о сети 201.36.14.0 с метрикой 3. Маршрутизаторы R1 и R2 опять меняются ролями — R2 снабжает R1 устаревшей информацией о пути к сети 201.36.14.0, уже с метрикой 4, которую R1 преобразует в метрику 5. Пакеты продолжают зацикливаться. Если бы в протоколе RIP не было выбрано расстояние 16 в качестве недостижимого, то описанный процесс длился бы бесконечно (вернее, пока не была бы исчерпана разрядная сетка поля расстояния, и при очередном наращивании расстояния было бы зафиксировано переполнение).

В результате маршрутизатор R2 на очередном этапе описанного процесса получает от маршрутизатора R1 метрику 15, которая после наращивания, превращаясь в метрику 16, фиксирует недостижимость сети. Таким образом, в нашем примере период нестабильной работы сети длился 36 минут!

Ограничение в 15 хопов сужает область применения протокола RIP до сетей, в которых число промежуточных маршрутизаторов не может быть больше 15. Для более масштабных сетей нужно применять другие протоколы маршрутизации, например OSPF, или разбивать сеть на автономные области.

Приведенный пример хорошо иллюстрирует главную причину нестабильности маршрутизаторов, работающих по протоколу RIP. Эта причина коренится в самом принципе работы дистанционно-векторных протоколов — использовании информации, полученной из «вторых рук». Действительно, маршрутизатор R2 передает маршрутизатору R1 информацию о достижимости сети 201.36.14.0, за достоверность которой он сам не отвечает.

ПРИМЕЧАНИЕ

Не следует думать, что при любых отказах интерфейсов и маршрутизаторов в сетях возникают маршрутные петли. Если бы маршрутизатор R1 успел передать сообщение о недостижимости сети 201.36.14.0 раньше ложной информации маршрутизатора R2, то маршрутная петля не образовалась бы. Так что маршрутные петли даже без дополнительных методов борьбы с ними возникают в среднем не более чем в половине потенциально возможных случаев.





Дата публикования: 2014-10-25; Прочитано: 758 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...